cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207379 Triangle read by rows: T(n,k) = number of parts that are in the k-th column of the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 4, 4, 3, 2, 1, 1, 4, 4, 4, 3, 2, 1, 1, 7, 7, 6, 5, 3, 2, 1, 1, 8, 8, 8, 6, 5, 3, 2, 1, 1, 12, 12, 11, 10, 7, 5, 3, 2, 1, 1, 14, 14, 14, 12, 10, 7, 5, 3, 2, 1, 1, 21, 21, 20, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 10 2012

Keywords

Comments

Note that for n >= 2 the tail of the last section of n starts at the second column and the second column contains only one part of size 1, thus both the first and the second columns contain the same number of parts. For more information see A135010 and A182703.

Examples

			Illustration of initial terms. First six rows of triangle as numbers of parts in the columns from the last sections of the first six natural numbers:
.                                       6
.                                       3 3
.                                       4 2
.                                       2 2 2
.                           5             1
.                           3 2             1
.                 4           1             1
.                 2 2           1             1
.         3         1           1             1
.   2       1         1           1             1
1     1       1         1           1             1
---------------------------------------------------
1,  1,1,  1,1,1,  2,2,1,1,  2,2,2,1,1,  4,4,3,2,1,1
...
Triangle begins:
1;
1,   1;
1,   1,  1;
2,   2,  1,  1;
2,   2,  2,  1,  1;
4,   4,  3,  2,  1,  1;
4,   4,  4,  3,  2,  1,  1;
7,   7,  6,  5,  3,  2,  1,  1;
8,   8,  8,  6,  5,  3,  2,  1,  1;
12, 12, 11, 10,  7,  5,  3,  2,  1,  1;
14, 14, 14, 12, 10,  7,  5,  3,  2,  1,  1;
21, 21, 20, 18, 14, 11,  7,  5,  3,  2,  1,  1;
		

Crossrefs

Column 1 is A187219. Row sums give A138137. Reversed rows converge to A000041.