This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207383 #32 Nov 29 2020 12:38:59 %S A207383 1,1,2,2,0,3,3,4,0,4,5,2,3,0,5,7,8,6,4,0,6,11,6,6,4,5,0,7,15,16,9,12, %T A207383 5,6,0,8,22,14,18,8,10,6,7,0,9,30,30,18,20,15,12,7,8,0,10,42,30,30,20, %U A207383 20,12,14,8,9,0,11,56,54,42,40,25,30,14,16,9,10,0,12 %N A207383 Triangle read by rows: T(n,k) is the sum of parts of size k in the last section of the set of partitions of n. %C A207383 For further properties of this triangle see also A182703. %H A207383 Alois P. Heinz, <a href="/A207383/b207383.txt">Rows n = 1..141, flattened</a> %F A207383 T(n,k) = k*A182703(n,k). %e A207383 Triangle begins: %e A207383 1; %e A207383 1, 2; %e A207383 2, 0, 3; %e A207383 3, 4, 0, 4; %e A207383 5, 2, 3, 0, 5; %e A207383 7, 8, 6, 4, 0, 6; %e A207383 11, 6, 6, 4, 5, 0, 7; %e A207383 15, 16, 9, 12, 5, 6, 0, 8; %e A207383 22, 14, 18, 8, 10, 6, 7, 0, 9; %e A207383 30, 30, 18, 20, 15, 12, 7, 8, 0, 10; %e A207383 42, 30, 30, 20, 20, 12, 14, 8, 9, 0, 11; %e A207383 56, 54, 42, 40, 25, 30, 14, 16, 9, 10, 0, 12; %e A207383 ... %e A207383 From _Omar E. Pol_, Nov 28 2020: (Start) %e A207383 Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7: %e A207383 . _ _ _ _ _ _ _ %e A207383 . (7) (7) |_ _ _ _ | %e A207383 . (4+3) (4+3) |_ _ _ _|_ | %e A207383 . (5+2) (5+2) |_ _ _ | | %e A207383 . (3+2+2) (3+2+2) |_ _ _|_ _|_ | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) | | %e A207383 . (1) (1) |_| %e A207383 . ---------------- %e A207383 . 19,8,5,3,2,1,1 --> Row 7 of triangle A207031 %e A207383 . |/|/|/|/|/|/| %e A207383 . 11,3,2,1,1,0,1 --> Row 7 of triangle A182703 %e A207383 . * * * * * * * %e A207383 . 1,2,3,4,5,6,7 --> Row 7 of triangle A002260 %e A207383 . = = = = = = = %e A207383 . 11,6,6,4,5,0,7 --> Row 7 of this triangle %e A207383 . %e A207383 Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So the 7th row of triangle is [11, 6, 6, 4, 5, 0, 7]. (End) %Y A207383 Column 1 is A000041. %Y A207383 Leading diagonal gives A000027. %Y A207383 Second diagonal gives A000007. %Y A207383 Row sums give A138879. %Y A207383 Cf. A002260, A066186, A135010, A138121, A138785, A138880, A182703, A194812, A207031. %K A207383 nonn,tabl %O A207383 1,3 %A A207383 _Omar E. Pol_, Feb 24 2012