This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207384 #7 Mar 30 2012 18:58:12 %S A207384 1,3,2,2,2,3,1,2,2,3,1,3,2,2,1,3,2,3,1,2,2,3,2,1,2,2,2,2,2,3,2,2,1,2, %T A207384 2,3,2,1,2,3,2,2,2,2,2,3,2,1,2,2,2,3,1,2,2,2,2,2,2,3,2,2,2,1,2,3,2,2, %U A207384 1,3,2,3,2,1,2,2,2,3,2,1,2,3,2,2,1,2,2,3,2,2,1,2,2,2,2,3,1,2,2 %N A207384 A206815(n+1)-A206815(n). %C A207384 The sequences A206815, A206818, A207384, A207835 illustrate the closeness of {j+pi(j)} to {k+(k+1)/log(k+1)}, as suggested by the prime number theorem and the conjecture that all the terms of A207384 and A207835 are in the set {1,2,3}. %e A207384 The joint ranking is represented by %e A207384 1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ... %e A207384 Positions of numbers j+pi(j): 1,2,5,7,9,... %e A207384 Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,.. %t A207384 f[1, n_] := n + PrimePi[n]; %t A207384 f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500; %t A207384 t[k_] := Table[f[k, n], {n, 1, z}]; %t A207384 t = Sort[Union[t[1], t[2]]]; %t A207384 p[k_, n_] := Position[t, f[k, n]]; %t A207384 Flatten[Table[p[1, n], {n, 1, z}]] (* A206815 *) %t A207384 Flatten[Table[p[2, n], {n, 1, z}]] (* A206818 *) %t A207384 d1[n_] := p[1, n + 1] - p[1, n] %t A207384 Flatten[Table[d1[n], {n, 1, z - 1}]] (* A207385 *) %t A207384 d2[n_] := p[2, n + 1] - p[2, n] %t A207384 Flatten[Table[d2[n], {n, 1, z - 1}]] (* A207386 *) %Y A207384 Cf. A000720, A206815, A206818. %K A207384 nonn %O A207384 1,2 %A A207384 _Clark Kimberling_, Feb 17 2012