cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207388 Number of n X 5 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

This page as a plain text file.
%I A207388 #9 Jun 22 2018 07:07:44
%S A207388 14,196,834,2356,5348,10570,18972,31710,50162,75944,110926,157248,
%T A207388 217336,293918,390040,509082,654774,831212,1042874,1294636,1591788,
%U A207388 1940050,2345588,2815030,3355482,3974544,4680326,5481464,6387136,7407078,8551600
%N A207388 Number of n X 5 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.
%C A207388 Column 5 of A207391.
%H A207388 R. H. Hardin, <a href="/A207388/b207388.txt">Table of n, a(n) for n = 1..210</a>
%F A207388 Empirical: a(n) = (2/15)*n^5 + (55/12)*n^4 + (101/6)*n^3 + (5/12)*n^2 - (299/30)*n + 2.
%F A207388 Conjectures from _Colin Barker_, Jun 22 2018: (Start)
%F A207388 G.f.: 2*x*(7 + 56*x - 66*x^2 + 6*x^3 + 6*x^4 - x^5) / (1 - x)^6.
%F A207388 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
%F A207388 (End)
%e A207388 Some solutions for n=4:
%e A207388 ..1..0..1..1..0....0..0..0..0..0....1..0..0..0..0....0..1..1..1..0
%e A207388 ..1..1..1..0..0....0..1..1..1..1....0..1..1..0..1....1..1..0..1..1
%e A207388 ..1..1..1..1..0....0..1..1..0..0....1..1..1..0..1....1..1..1..1..0
%e A207388 ..1..1..1..1..0....0..1..1..1..1....1..1..1..0..1....1..1..0..1..1
%Y A207388 Cf. A207391.
%K A207388 nonn
%O A207388 1,1
%A A207388 _R. H. Hardin_, Feb 17 2012