A207399 Number of n X 4 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.
9, 81, 289, 729, 1521, 2809, 4761, 7569, 11449, 16641, 23409, 32041, 42849, 56169, 72361, 91809, 114921, 142129, 173889, 210681, 253009, 301401, 356409, 418609, 488601, 567009, 654481, 751689, 859329, 978121, 1108809, 1252161, 1408969
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1..1....0..0..0..0....1..0..1..0....1..0..0..0....1..1..0..1 ..1..1..1..1....0..0..0..0....1..1..1..1....0..1..0..0....0..0..0..0 ..1..1..1..1....0..0..0..0....1..1..1..1....1..0..0..0....0..1..0..1 ..1..1..1..1....0..0..0..0....1..1..1..1....1..1..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A207403.
Formula
Empirical: a(n) = n^4 + 6*n^3 + 7*n^2 - 6*n + 1.
Conjectures from Colin Barker, Mar 05 2018: (Start)
G.f.: x*(9 + 36*x - 26*x^2 + 4*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments