cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207399 Number of n X 4 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

9, 81, 289, 729, 1521, 2809, 4761, 7569, 11449, 16641, 23409, 32041, 42849, 56169, 72361, 91809, 114921, 142129, 173889, 210681, 253009, 301401, 356409, 418609, 488601, 567009, 654481, 751689, 859329, 978121, 1108809, 1252161, 1408969
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 4 of A207403.

Examples

			Some solutions for n=4:
..1..1..1..1....0..0..0..0....1..0..1..0....1..0..0..0....1..1..0..1
..1..1..1..1....0..0..0..0....1..1..1..1....0..1..0..0....0..0..0..0
..1..1..1..1....0..0..0..0....1..1..1..1....1..0..0..0....0..1..0..1
..1..1..1..1....0..0..0..0....1..1..1..1....1..1..0..0....0..0..0..0
		

Crossrefs

Cf. A207403.

Formula

Empirical: a(n) = n^4 + 6*n^3 + 7*n^2 - 6*n + 1.
Conjectures from Colin Barker, Mar 05 2018: (Start)
G.f.: x*(9 + 36*x - 26*x^2 + 4*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207398 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 16, 102, 729, 4212, 26896, 154580, 970225, 5697150, 36000000, 216023850, 1377968641, 8411571224, 54080432704, 334469528520, 2163643890489, 13517662791690, 87865126849600, 553380551724110, 3610810383420361
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Diagonal of A207403

Examples

			Some solutions for n=4
..0..0..0..0....1..0..0..0....1..1..0..1....1..0..0..0....1..0..1..0
..1..0..1..0....0..1..0..0....1..1..0..1....0..1..0..0....1..1..0..0
..0..0..0..0....0..1..0..0....1..1..0..1....1..0..0..0....1..1..1..0
..0..0..0..0....0..1..0..0....1..1..0..1....1..1..0..0....1..1..1..0
		

A207400 Number of n X 5 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 612, 1782, 4212, 8692, 16284, 28362, 46652, 73272, 110772, 162174, 231012, 321372, 437932, 586002, 771564, 1001312, 1282692, 1623942, 2034132, 2523204, 3102012, 3782362, 4577052, 5499912, 6565844, 7790862, 9192132, 10788012
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 5 of A207403.

Examples

			Some solutions for n=4:
..0..0..0..0..0....1..0..1..0..1....1..1..0..1..0....0..1..0..1..0
..0..1..0..0..0....0..1..0..0..0....0..0..0..0..0....0..1..0..0..0
..0..0..0..0..0....0..1..0..0..0....1..1..0..0..0....0..1..0..0..0
..0..0..0..0..0....0..1..0..0..0....1..1..0..0..0....0..1..0..0..0
		

Crossrefs

Cf. A207403.

Formula

Empirical: a(n) = (1/3)*n^5 + 3*n^4 + (28/3)*n^3 + 7*n^2 - (29/3)*n + 2.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: 2*x*(6 + 36*x - 36*x^2 + 15*x^3 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A207401 Number of n X 6 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

16, 256, 1296, 4356, 11664, 26896, 55696, 106276, 190096, 322624, 524176, 820836, 1245456, 1838736, 2650384, 3740356, 5180176, 7054336, 9461776, 12517444, 16353936, 21123216, 26998416, 34175716, 42876304, 53348416, 65869456, 80748196
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 6 of A207403.

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1....1..0..1..0..1..0
..0..1..0..0..0..0....1..0..1..0..1..0....1..1..1..1..0..1....0..1..0..1..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1....0..1..0..1..0..0
..0..0..0..0..0..0....1..0..0..0..0..0....1..1..1..1..0..1....0..1..0..1..0..0
		

Crossrefs

Cf. A207403.

Formula

Empirical: a(n) = (1/9)*n^6 + (4/3)*n^5 + (58/9)*n^4 + (40/3)*n^3 + (49/9)*n^2 - (44/3)*n + 4.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: 4*x*(4 + 36*x - 40*x^2 + 25*x^3 - 3*x^4 - 3*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A207402 Number of n X 7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

20, 400, 2340, 8910, 26676, 68060, 154580, 321110, 621300, 1134296, 1972900, 3293310, 5306580, 8291940, 12612116, 18730790, 27232340, 38844000, 54460580, 75171886, 102292980, 137397420, 182353620, 239364470, 311010356, 400295720
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 7 of A207403.

Examples

			Some solutions for n=4:
..0..0..0..0..0..0..0....0..1..0..1..0..0..0....1..1..1..1..1..1..1
..1..1..1..0..0..0..0....0..1..0..1..0..0..0....0..1..0..1..0..0..0
..0..0..0..0..0..0..0....0..1..0..1..0..0..0....1..1..1..1..1..1..1
..1..0..0..0..0..0..0....0..1..0..1..0..0..0....0..1..0..1..0..0..0
		

Crossrefs

Cf. A207403.

Formula

Empirical: a(n) = (1/36)*n^7 + (4/9)*n^6 + (53/18)*n^5 + (91/9)*n^4 + (589/36)*n^3 + (31/9)*n^2 - (58/3)*n + 6.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: 2*x*(10 + 120*x - 150*x^2 + 135*x^3 - 42*x^4 - 14*x^5 + 14*x^6 - 3*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A207404 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

8, 64, 216, 729, 1782, 4356, 8910, 18225, 33210, 60516, 101598, 170569, 269276, 425104, 639612, 962361, 1393020, 2016400, 2827220, 3964081, 5411538, 7387524, 9858186, 13155129, 17213742, 22524516, 28974330, 37271025, 47228280, 59845696
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 4 of A207403

Examples

			Some solutions for n=4
..0..1..0..0....0..0..0..0....1..0..0..0....1..1..0..1....1..0..0..0
..0..0..0..0....0..0..0..0....0..1..0..0....1..0..1..0....0..1..0..0
..0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0....1..1..0..0
..0..0..0..0....0..0..0..0....1..1..0..0....1..0..0..0....0..1..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A207405 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 390, 1521, 4212, 11664, 26676, 61009, 123006, 248004, 456666, 840889, 1445192, 2483776, 4042440, 6579225, 10244610, 15952036, 23944030, 35940025, 52300380, 76108176, 107854812, 152843769, 211679286, 293162884, 397932402
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 5 of A207403

Examples

			Some solutions for n=4
..0..0..0..0....1..1..0..0....0..0..0..0....1..0..1..0....1..1..0..0
..1..0..0..0....0..0..0..0....0..1..0..0....0..1..0..0....1..1..1..0
..0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0....1..1..1..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0....1..1..1..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0....1..1..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)

A207406 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 636, 2809, 8692, 26896, 68060, 172225, 380970, 842724, 1690038, 3389281, 6303584, 11723776, 20533728, 35964009, 59970000, 100000000, 160050000, 256160025, 395963700, 612067600, 918225100, 1377523225, 2013488750
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 6 of A207403

Examples

			Some solutions for n=4
..0..1..0..1....1..0..0..0....1..1..1..1....0..0..0..0....1..0..0..0
..0..1..0..0....0..0..0..0....1..1..1..1....1..1..0..0....0..1..0..1
..0..1..0..0....0..0..0..0....1..1..1..1....0..0..0..0....0..1..0..0
..0..1..0..0....0..0..0..0....1..1..1..1....1..0..0..0....0..1..0..1
..0..1..0..0....0..0..0..0....1..1..1..1....0..0..0..0....0..1..0..1
..0..1..0..0....0..0..0..0....1..1..1..1....1..0..0..0....0..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)

A207407 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 966, 4761, 16284, 55696, 154580, 429025, 1033590, 2490084, 5404650, 11730625, 23481800, 47004736, 88175016, 165405321, 294131070, 523036900, 889299950, 1512043225, 2474485860, 4049540496, 6412154268, 10153182169
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 7 of A207403

Examples

			Some solutions for n=4
..1..0..0..0....0..0..0..0....0..1..0..0....1..1..0..0....1..0..1..0
..0..1..0..0....1..0..1..0....0..1..0..1....1..1..0..0....1..1..0..1
..0..1..0..0....0..0..0..0....0..1..0..1....1..1..0..0....1..1..0..1
..0..1..0..0....0..0..0..0....0..1..0..1....1..1..0..0....1..1..0..1
..0..1..0..0....0..0..0..0....0..1..0..1....1..1..0..0....1..1..0..1
..0..1..0..0....0..0..0..0....0..1..0..1....1..1..0..0....1..1..0..1
..0..1..0..0....0..0..0..0....0..1..0..1....1..1..0..0....1..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28)
Showing 1-9 of 9 results.