cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207436 Number of n X 2 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

4, 16, 36, 81, 196, 484, 1225, 3136, 8100, 21025, 54756, 142884, 373321, 976144, 2553604, 6682225, 17489124, 45778756, 119836809, 313714944, 821280964, 2150084161, 5628900676, 14736503236, 38580423561, 101004467344, 264432492900
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 2 of A207442.

Examples

			Some solutions for n=4:
  1 0   0 1   0 1   1 1   0 0   0 0   1 0   1 1   1 1   0 1
  0 1   1 0   1 1   1 1   1 0   0 1   1 1   1 1   0 0   1 0
  1 1   0 1   1 0   1 1   1 0   0 0   1 1   1 1   1 1   1 1
  1 0   1 1   1 1   1 1   0 0   0 1   1 1   0 0   0 0   1 0
		

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 6*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) for n > 7.
Empirical g.f.: x*(4 - 20*x^2 - 7*x^3 + 24*x^4 + 6*x^5 - 5*x^6) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)). - Colin Barker, Feb 17 2018
Empirical: a(n) = 1 - 2*A033999(n)/5 +2*A000045(n+2) +7*A001906(n+1)/5 -3*A001906(n)/5 for n>1. - R. J. Mathar, Nov 09 2018