cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A207436 Number of n X 2 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

4, 16, 36, 81, 196, 484, 1225, 3136, 8100, 21025, 54756, 142884, 373321, 976144, 2553604, 6682225, 17489124, 45778756, 119836809, 313714944, 821280964, 2150084161, 5628900676, 14736503236, 38580423561, 101004467344, 264432492900
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 2 of A207442.

Examples

			Some solutions for n=4:
  1 0   0 1   0 1   1 1   0 0   0 0   1 0   1 1   1 1   0 1
  0 1   1 0   1 1   1 1   1 0   0 1   1 1   1 1   0 0   1 0
  1 1   0 1   1 0   1 1   1 0   0 0   1 1   1 1   1 1   1 1
  1 0   1 1   1 1   1 1   0 0   0 1   1 1   0 0   0 0   1 0
		

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 6*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) for n > 7.
Empirical g.f.: x*(4 - 20*x^2 - 7*x^3 + 24*x^4 + 6*x^5 - 5*x^6) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)). - Colin Barker, Feb 17 2018
Empirical: a(n) = 1 - 2*A033999(n)/5 +2*A000045(n+2) +7*A001906(n+1)/5 -3*A001906(n)/5 for n>1. - R. J. Mathar, Nov 09 2018

A207435 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 16, 108, 1360, 41092, 2405923, 284247216, 68394049216, 33064776069834, 31868588102983450, 61446275576502856313, 236673591523285699197386, 1818567731722871472685169098, 27879399799936252965503867197417
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Diagonal of A207442

Examples

			Some solutions for n=4
..1..1..1..0....1..0..0..0....0..0..0..0....1..1..0..1....1..1..0..1
..0..1..1..1....0..1..1..1....1..1..0..1....0..1..1..1....1..0..1..1
..1..1..1..0....1..0..0..0....0..0..0..0....1..0..0..0....0..1..1..1
..0..1..1..1....0..1..1..1....1..1..0..1....1..1..1..1....1..1..0..0
		

A207437 Number of n X 3 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

6, 36, 108, 333, 1144, 4048, 14743, 54250, 201098, 747683, 2785178, 10383774, 38732585, 144511028, 539243500, 2012324661, 7509786472, 28026278000, 104594259855, 390348614698, 1456795959866, 5436826706395, 20290493971290
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 3 of A207442.

Examples

			Some solutions for n=4:
..0..1..1....1..1..1....0..0..0....0..1..1....1..0..1....0..1..1....1..1..0
..1..1..0....1..1..1....0..1..1....0..0..0....0..1..1....1..1..1....1..0..1
..1..1..1....0..1..1....0..0..0....0..1..1....1..1..0....0..0..0....1..1..0
..1..0..1....1..1..0....0..1..1....0..1..1....1..0..1....1..1..1....0..1..1
		

Crossrefs

Cf. A207442.

Formula

Empirical: a(n) = 6*a(n-1) - 5*a(n-2) - 22*a(n-3) + 32*a(n-4) + 16*a(n-5) - 35*a(n-6) + 2*a(n-7) + 9*a(n-8) - 2*a(n-9) for n>10.
Empirical g.f.: x*(6 - 78*x^2 - 3*x^3 + 286*x^4 - 23*x^5 - 321*x^6 + 64*x^7 + 87*x^8 - 22*x^9) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 4*x + x^2)*(1 + x - x^2)*(1 - x - x^2)). - Colin Barker, Jun 22 2018

A207438 Number of nX4 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 323, 1360, 6525, 32393, 165626, 855471, 4449491, 23211486, 121314285, 634633939, 3321850282, 17392770603, 91082814851, 477033173168, 2498544485965, 13087020633451, 68549369291830, 359063591740895, 1880798904630019
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 4 of A207442

Examples

			Some solutions for n=4
..0..0..0..0....1..1..0..1....1..0..0..0....1..0..1..1....0..0..0..0
..1..0..1..1....1..0..1..1....0..1..1..1....1..0..1..1....1..1..1..0
..1..0..0..0....0..1..1..1....1..0..0..0....0..0..0..0....1..1..1..0
..1..0..1..1....1..1..0..0....0..1..1..1....1..0..1..1....1..1..0..0
		

Formula

Empirical: a(n) = 8*a(n-1) +a(n-2) -120*a(n-3) +106*a(n-4) +730*a(n-5) -804*a(n-6) -2308*a(n-7) +2565*a(n-8) +4000*a(n-9) -4254*a(n-10) -3640*a(n-11) +3811*a(n-12) +1460*a(n-13) -1708*a(n-14) -82*a(n-15) +284*a(n-16) -48*a(n-17) for n>18

A207439 Number of nX5 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

14, 196, 1058, 6092, 41092, 287176, 2078416, 15205846, 112194576, 830644666, 6164313588, 45797993894, 340506032496, 2532629346748, 18841813944052, 140194996784152, 1043225043809532, 7763261577517704, 57772735506889650
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 5 of A207442

Examples

			Some solutions for n=4
..1..1..1..1..0....1..1..1..1..1....0..1..1..1..1....1..1..0..0..0
..0..1..1..1..1....0..1..1..1..1....1..1..1..0..0....0..1..1..0..0
..1..0..0..0..0....1..1..1..1..1....0..1..1..1..1....1..0..0..0..0
..0..1..1..1..1....1..1..1..1..0....1..1..1..1..0....1..1..1..0..0
		

Formula

Empirical: a(n) = 12*a(n-1) +11*a(n-2) -527*a(n-3) +509*a(n-4) +10409*a(n-5) -14705*a(n-6) -122529*a(n-7) +177998*a(n-8) +954829*a(n-9) -1262733*a(n-10) -5160618*a(n-11) +5837090*a(n-12) +19745843*a(n-13) -18587143*a(n-14) -53918092*a(n-15) +42406647*a(n-16) +105213797*a(n-17) -71528289*a(n-18) -146069025*a(n-19) +90996128*a(n-20) +142347619*a(n-21) -87266101*a(n-22) -94470880*a(n-23) +61334863*a(n-24) +40008895*a(n-25) -29788778*a(n-26) -9229349*a(n-27) +9062894*a(n-28) +557436*a(n-29) -1449822*a(n-30) +147300*a(n-31) +81432*a(n-32) -15120*a(n-33) for n>34

A207440 Number of nX6 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

21, 441, 3223, 25689, 243981, 2405923, 24609889, 254583643, 2656816215, 27824719899, 292111495571, 3070203057091, 32292544414703, 339784841081719, 3576079932320067, 37641488144050995, 396241624155306475
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 6 of A207442

Examples

			Some solutions for n=4
..0..1..1..1..1..0....0..1..1..0..1..1....1..0..0..0..0..0....1..1..0..0..0..0
..1..1..1..1..1..1....1..0..1..1..0..1....0..1..1..1..0..1....0..1..1..1..0..0
..0..0..0..0..0..0....0..1..1..0..1..1....1..1..1..0..0..0....1..0..0..0..0..0
..1..1..1..1..1..1....1..0..1..1..0..1....1..0..1..1..0..1....0..1..1..1..0..0
		

Formula

Empirical: a(n) = 18*a(n-1) +28*a(n-2) -1919*a(n-3) +2979*a(n-4) +95362*a(n-5) -231612*a(n-6) -2949305*a(n-7) +7839332*a(n-8) +63720042*a(n-9) -164002054*a(n-10) -1019649574*a(n-11) +2364255804*a(n-12) +12477359528*a(n-13) -24746209476*a(n-14) -118883561082*a(n-15) +193787167388*a(n-16) +891433774270*a(n-17) -1157423217265*a(n-18) -5297391355794*a(n-19) +5345464441617*a(n-20) +25079478449369*a(n-21) -19313901821721*a(n-22) -95011041062107*a(n-23) +55287876514837*a(n-24) +289144638873935*a(n-25) -127562004651401*a(n-26) -709194571213981*a(n-27) +243339259342592*a(n-28) +1405179088403437*a(n-29) -397217721979316*a(n-30) -2250850677347766*a(n-31) +573775027721393*a(n-32) +2910138635003772*a(n-33) -742562612564521*a(n-34) -3021646123150501*a(n-35) +843533209213982*a(n-36) +2494825273542855*a(n-37) -806746281554019*a(n-38) -1610645232997162*a(n-39) +621348805302137*a(n-40) +791158632247651*a(n-41) -370170752635263*a(n-42) -282576283737423*a(n-43) +163929215752658*a(n-44) +67452204505121*a(n-45) -51463161953584*a(n-46) -8683298468122*a(n-47) +10712887866850*a(n-48) +1992990400*a(n-49) -1326988381076*a(n-50) +156248141136*a(n-51) +79071181632*a(n-52) -15988767360*a(n-53) -1217401920*a(n-54) +347155200*a(n-55) for n>56

A207441 Number of nX7 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

31, 961, 9515, 105690, 1414091, 19685415, 284247216, 4151434555, 61157761473, 904153356114, 13398763251407, 198786170639419, 2951352268541230, 43835137032613613, 651215738558433885, 9675736244048801824
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 7 of A207442

Examples

			Some solutions for n=4
..1..1..1..1..1..1..1....0..1..1..1..1..1..1....1..0..0..0..0..0..0
..0..1..1..1..1..0..1....0..0..0..0..0..0..0....1..1..1..0..1..1..0
..1..1..1..1..1..1..0....0..1..1..1..1..1..1....1..1..0..0..0..0..0
..1..1..1..1..0..1..1....0..1..1..0..1..1..0....1..1..1..0..1..1..0
		

Formula

Empirical: a(n) = 23*a(n-1) +161*a(n-2) -6262*a(n-3) -7478*a(n-4) +811820*a(n-5) -299651*a(n-6) -66672015*a(n-7) +54917168*a(n-8) +3886833415*a(n-9) -3208033552*a(n-10) -170712019713*a(n-11) +104913357436*a(n-12) +5852512937381*a(n-13) -1790519744956*a(n-14) -160255468490367*a(n-15) -6437156054719*a(n-16) +3561180318451352*a(n-17) +1397483834156613*a(n-18) -64975435851671991*a(n-19) -47857141868714314*a(n-20) +982068157331977385*a(n-21) +1049479202595377546*a(n-22) -12382157342867777561*a(n-23) -17228190936855896753*a(n-24) +130947933650507392726*a(n-25) +224172598602735516751*a(n-26) -1166517151857575772233*a(n-27) -2381338992502484939703*a(n-28) +8780009745659100942944*a(n-29) +21033144245434140742640*a(n-30) -55931644061194577713692*a(n-31) -156445210842021455151289*a(n-32) +301577523513453942483779*a(n-33) +989369057590228418369379*a(n-34) -1373040285003897414780610*a(n-35) -5360504419780533666995941*a(n-36) +5244724030632806301218027*a(n-37) +25040923321938323880188566*a(n-38) -16571811613519353866102463*a(n-39) -101399432394772571865850238*a(n-40) +41949989478246463941404113*a(n-41) +357602739609206159080602070*a(n-42) -77996761718077617483455925*a(n-43) -1102915961004370020842870476*a(n-44) +70748590780597106131245959*a(n-45) +2985702382105446766887944038*a(n-46) +165964035702314328493122549*a(n-47) -7117094614809860855159864036*a(n-48) -1040428211051384221078553793*a(n-49) +14979586342358088815307419008*a(n-50) +3163818168562638090052259557*a(n-51) -27900038881897583968093093133*a(n-52) -7064761634733061343065085542*a(n-53) +46060291422037323566832067907*a(n-54) +12631019852523563831993136433*a(n-55) -67463065344196545338081945757*a(n-56) -18623427104093393012933118794*a(n-57) +87670675193203457353973814919*a(n-58) +22843470029371533069842413245*a(n-59) -100991927076095889457804896519*a(n-60) -23210158055512990916978791006*a(n-61) +102909025597974122807434335512*a(n-62) +19157605185046394532533397450*a(n-63) -92442834141654251444871899813*a(n-64) -12208257137230702937166893583*a(n-65) +72849089095551992943273807149*a(n-66) +5099789132045254366973356014*a(n-67) -50033991510605233786002340028*a(n-68) -110979448184963265619026584*a(n-69) +29698098992843791890092313910*a(n-70) -2066178896946293578284742262*a(n-71) -15071315786450939107986495482*a(n-72) +2176859542635896798557288482*a(n-73) +6450391935119914094380764318*a(n-74) -1436000328863374222022198898*a(n-75) -2287099037451313529163169764*a(n-76) +700420153216182433075055584*a(n-77) +655667331397874207499607112*a(n-78) -262892758740536554332073960*a(n-79) -146605752543563862507431816*a(n-80) +76328381151405717033532456*a(n-81) +24035023435144458945757504*a(n-82) -16943225122326394656821184*a(n-83) -2503686041810753746073920*a(n-84) +2804397627567516251523936*a(n-85) +74724217653815864034944*a(n-86) -332341715478875718775040*a(n-87) +21663114452588778389632*a(n-88) +26425132667824614972928*a(n-89) -3671099610722171489792*a(n-90) -1258307510213832188928*a(n-91) +258895641105089961984*a(n-92) +28061711644527316992*a(n-93) -8199270146866692096*a(n-94) -106311826350342144*a(n-95) +79326978366504960*a(n-96) for n>97

A207443 Number of 3Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

6, 36, 108, 323, 1058, 3223, 9515, 28426, 84486, 249106, 734637, 2166526, 6380211, 18782449, 55296998, 162765970, 479038288, 1409873905, 4149367138, 12211531035, 35938252497, 105765419940, 311263342522, 916033572652, 2695845174863
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 3 of A207442

Examples

			Some solutions for n=4
..0..0..0..0....0..1..1..0....1..0..0..0....0..1..1..1....1..1..1..1
..0..1..1..0....0..0..0..0....1..0..1..1....1..0..0..0....0..0..0..0
..0..1..1..0....0..1..1..0....0..0..0..0....0..1..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +16*a(n-3) -35*a(n-4) +19*a(n-5) -48*a(n-6) +80*a(n-7) +12*a(n-8) +52*a(n-9) -92*a(n-10) -54*a(n-11) -52*a(n-12) +76*a(n-13) +43*a(n-14) +32*a(n-15) -27*a(n-16) -16*a(n-17) -11*a(n-18) +5*a(n-19) +2*a(n-21)

A207444 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 333, 1360, 6092, 25689, 105690, 439332, 1821924, 7521414, 31063445, 128325745, 529821580, 2187257369, 9030334421, 37280871533, 153905038835, 635365800266, 2622977336044, 10828351058245, 44702329730212
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 4 of A207442

Examples

			Some solutions for n=4
..0..0..0..0....1..1..0..0....1..0..1..1....1..0..0..0....1..0..0..0
..1..1..0..1....0..1..1..0....1..0..0..0....1..1..1..0....0..1..1..1
..0..0..0..0....1..1..1..0....1..0..1..1....0..0..0..0....1..0..0..0
..1..1..0..1....0..1..1..0....0..0..0..0....1..1..1..0....0..1..1..1
		

Formula

Empirical: a(n) = 5*a(n-1) -4*a(n-2) +21*a(n-3) -78*a(n-4) -31*a(n-5) -41*a(n-6) +475*a(n-7) +568*a(n-8) -94*a(n-9) -2370*a(n-10) -2473*a(n-11) +670*a(n-12) +6654*a(n-13) +6859*a(n-14) -1652*a(n-15) -11383*a(n-16) -11186*a(n-17) +818*a(n-18) +11923*a(n-19) +11553*a(n-20) +1019*a(n-21) -6760*a(n-22) -7392*a(n-23) -1944*a(n-24) +1915*a(n-25) +2670*a(n-26) +1090*a(n-27) -64*a(n-28) -529*a(n-29) -259*a(n-30) -53*a(n-31) +46*a(n-32) +24*a(n-33) +8*a(n-34) -4*a(n-35)

A207445 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

14, 196, 1144, 6525, 41092, 243981, 1414091, 8282682, 48412066, 281750934, 1640832501, 9559066218, 55654361363, 324008102605, 1886556006594, 10983861307496, 63947257459350, 372306029356615, 2167596140359934
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 5 of A207442

Examples

			Some solutions for n=4
..0..1..1..1....1..0..0..0....1..1..0..1....1..0..0..0....0..0..0..0
..1..0..1..1....0..1..1..1....0..1..1..1....1..1..1..0....1..0..0..0
..1..1..1..0....1..0..1..1....1..0..0..0....1..1..1..0....1..0..0..0
..0..1..1..1....1..1..0..0....0..1..1..1....0..1..1..0....0..0..0..0
..1..1..0..0....0..1..1..1....1..0..0..0....1..1..0..0....1..0..0..0
		

Formula

Empirical: a(n) = 7*a(n-1) -13*a(n-2) +124*a(n-3) -526*a(n-4) +232*a(n-5) -3645*a(n-6) +13207*a(n-7) +14877*a(n-8) +52650*a(n-9) -224642*a(n-10) -473381*a(n-11) -672901*a(n-12) +3064090*a(n-13) +7334878*a(n-14) +6670830*a(n-15) -29082141*a(n-16) -74736970*a(n-17) -56588322*a(n-18) +198037935*a(n-19) +530163121*a(n-20) +414792732*a(n-21) -939398570*a(n-22) -2765449637*a(n-23) -2426604263*a(n-24) +2926747422*a(n-25) +10676819866*a(n-26) +10970937518*a(n-27) -4802001197*a(n-28) -30151784684*a(n-29) -37061515893*a(n-30) -3654549986*a(n-31) +60053619721*a(n-32) +91501555402*a(n-33) +44645972988*a(n-34) -75262474382*a(n-35) -160704300013*a(n-36) -129703557592*a(n-37) +33548811995*a(n-38) +188879921605*a(n-39) +217883386003*a(n-40) +67501598011*a(n-41) -126578938325*a(n-42) -227577629696*a(n-43) -152848347337*a(n-44) +12681015602*a(n-45) +138725878740*a(n-46) +146439693118*a(n-47) +54699018049*a(n-48) -36031630691*a(n-49) -76114932354*a(n-50) -44081339773*a(n-51) -4848392341*a(n-52) +24222782183*a(n-53) +13039814620*a(n-54) +927307332*a(n-55) -11960029420*a(n-56) -3823082511*a(n-57) +2714897322*a(n-58) +9962671502*a(n-59) +5531645963*a(n-60) +937945359*a(n-61) -4424927901*a(n-62) -4065292091*a(n-63) -2359809240*a(n-64) +393414674*a(n-65) +1252646213*a(n-66) +1184532648*a(n-67) +384697970*a(n-68) -93145487*a(n-69) -266946145*a(n-70) -161225772*a(n-71) -39744272*a(n-72) +25784114*a(n-73) +28805632*a(n-74) +11172903*a(n-75) -568392*a(n-76) -3129699*a(n-77) -1161604*a(n-78) +119482*a(n-79) +378654*a(n-80) +58507*a(n-81) -61870*a(n-82) -44944*a(n-83) -11710*a(n-84) +9418*a(n-85) +4878*a(n-86) +830*a(n-87) -144*a(n-88) -413*a(n-89) -52*a(n-90) +12*a(n-91) +4*a(n-93)
Showing 1-10 of 12 results. Next