A207449 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
10, 100, 330, 760, 1450, 2460, 3850, 5680, 8010, 10900, 14410, 18600, 23530, 29260, 35850, 43360, 51850, 61380, 72010, 83800, 96810, 111100, 126730, 143760, 162250, 182260, 203850, 227080, 252010, 278700, 307210, 337600, 369930, 404260, 440650
Offset: 1
Keywords
Examples
Some solutions for n=5: ..1..0..1..0....1..0..1..0....1..1..1..0....0..1..1..0....1..1..0..0 ..1..0..1..1....1..1..1..1....0..1..1..1....1..1..0..1....1..0..1..0 ..1..0..1..1....0..1..0..1....0..1..0..0....1..1..0..0....1..0..1..0 ..1..0..1..0....0..1..0..0....0..1..0..0....0..1..0..0....1..0..1..0 ..1..0..1..0....0..1..0..0....0..1..0..0....0..1..0..0....1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A207453.
Formula
Empirical: a(n) = 10*n^3 + 10*n^2 - 10*n.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: 10*x*(1 + 6*x - x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
Comments