cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207489 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

9, 81, 177, 530, 1322, 2749, 6217, 12712, 25908, 52474, 103704, 205390, 402848, 787367, 1536289, 2987863, 5806685, 11270614, 21859130, 42378217, 82121061, 159101032, 308184196, 596883878, 1155938528, 2238468542, 4334604962
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 4 of A207488

Examples

			Some solutions for n=4
..1..1..0..0....0..0..1..0....1..1..0..1....0..1..0..0....1..1..0..1
..0..1..0..1....1..0..1..0....0..0..1..0....0..1..0..1....1..1..0..1
..1..1..0..0....0..0..1..0....0..1..0..1....0..1..0..0....1..1..1..1
..0..1..0..1....0..0..1..0....1..0..1..0....1..1..1..1....1..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) +a(n-3) -11*a(n-4) -5*a(n-5) +a(n-6) +23*a(n-7) +14*a(n-8) +4*a(n-9) -37*a(n-10) -31*a(n-11) -6*a(n-12) +43*a(n-13) +31*a(n-14) +2*a(n-15) -28*a(n-16) -15*a(n-17) +9*a(n-19) +3*a(n-20) -a(n-22)