cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207495 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

6, 36, 102, 297, 932, 2974, 9723, 32164, 107568, 362291, 1226924, 4170948, 14218841, 48567776, 166128066, 568812225, 1948947544, 6681079858, 22911053867, 78586955264, 269607037796, 925049643523, 3174213970624, 10892652172048
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2012

Keywords

Comments

Column 3 of A207500.

Examples

			Some solutions for n=4:
..0..0..1....0..1..0....1..1..0....1..1..1....1..0..0....0..1..0....1..0..1
..1..1..0....1..1..0....1..0..1....1..1..1....0..0..1....0..0..1....1..1..0
..0..0..1....1..1..0....1..1..0....0..1..0....1..0..0....0..1..0....0..0..1
..1..1..0....1..0..0....0..0..1....1..1..1....1..0..1....0..0..1....1..1..1
		

Crossrefs

Cf. A207500.

Formula

Empirical: a(n) = 5*a(n-1) -2*a(n-2) -14*a(n-3) +6*a(n-4) +8*a(n-5) -a(n-6) -a(n-7) for n>8.
Empirical g.f.: x*(6 + 6*x - 66*x^2 - 57*x^3 + 119*x^4 + 72*x^5 - 19*x^6 - 11*x^7) / ((1 - x)*(1 - 2*x - x^2)*(1 - 2*x - 5*x^2 + x^4)). - Colin Barker, Mar 05 2018

A207494 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 16, 102, 1004, 14253, 237576, 5715255, 163471950, 6200122170, 294261603282, 17977383927693, 1375335087129521, 138833395825965196, 17233401412131428885, 2924391663494366576782, 600552802391087361313757
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Diagonal of A207500

Examples

			Some solutions for n=4
..1..1..0..1....0..0..1..0....1..1..0..1....0..1..0..0....1..1..0..1
..0..1..0..0....1..1..1..1....1..1..0..1....0..0..1..0....0..0..1..0
..1..1..0..1....0..0..1..0....0..1..0..0....0..1..0..0....1..1..1..1
..0..1..0..1....1..1..0..1....1..0..0..1....0..0..1..0....1..0..1..0
		

A207496 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 283, 1004, 3939, 15495, 62530, 253747, 1040401, 4290258, 17800079, 74193193, 310541536, 1304248843, 5493846571, 23198279836, 98159361513, 416061031363, 1766079438934, 7505644908143, 31930399614415, 135952464116764
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 4 of A207500

Examples

			Some solutions for n=4
..0..0..1..0....1..1..0..1....1..0..1..0....0..1..0..0....1..1..0..1
..1..0..1..0....1..1..0..1....0..0..1..0....0..0..1..0....0..1..0..0
..0..0..1..0....0..1..0..0....1..0..1..0....0..1..0..0....1..1..0..1
..1..0..1..0....1..0..0..1....0..0..1..0....0..0..1..0....0..1..0..1
		

Formula

Empirical: a(n) = 9*a(n-1) -11*a(n-2) -92*a(n-3) +184*a(n-4) +391*a(n-5) -806*a(n-6) -893*a(n-7) +1570*a(n-8) +1170*a(n-9) -1486*a(n-10) -867*a(n-11) +679*a(n-12) +340*a(n-13) -139*a(n-14) -62*a(n-15) +10*a(n-16) +4*a(n-17) for n>18

A207497 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

13, 169, 699, 2942, 14253, 68745, 343310, 1714707, 8658045, 43808202, 222697019, 1134527403, 5795073744, 29653954449, 152010652165, 780332029484, 4010975606113, 20639771978707, 106316035774240, 548128063053109
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 5 of A207500

Examples

			Some solutions for n=4
..1..0..1..0..1....1..1..1..1..1....0..0..1..0..0....0..0..1..0..0
..0..0..1..0..0....1..1..0..1..0....1..1..1..1..0....0..1..0..0..1
..1..0..1..0..1....1..1..1..1..1....1..1..1..1..0....0..0..1..0..0
..1..0..1..0..0....1..0..1..0..0....0..1..0..1..0....0..1..0..0..1
		

Formula

Empirical: a(n) = 13*a(n-1) -17*a(n-2) -407*a(n-3) +1361*a(n-4) +5048*a(n-5) -24757*a(n-6) -30088*a(n-7) +231328*a(n-8) +66085*a(n-9) -1314702*a(n-10) +224399*a(n-11) +4884111*a(n-12) -2047901*a(n-13) -12326395*a(n-14) +6862627*a(n-15) +21620699*a(n-16) -13538690*a(n-17) -26727847*a(n-18) +17354874*a(n-19) +23481642*a(n-20) -14973565*a(n-21) -14711868*a(n-22) +8790663*a(n-23) +6559254*a(n-24) -3492706*a(n-25) -2059830*a(n-26) +917580*a(n-27) +444862*a(n-28) -151484*a(n-29) -62872*a(n-30) +14112*a(n-31) +5224*a(n-32) -560*a(n-33) -192*a(n-34) for n>35

A207498 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

18, 324, 1526, 7305, 41938, 237576, 1413961, 8384076, 50497372, 304338351, 1845174892, 11203596798, 68215344617, 415886615986, 2539409090804, 15520995658437, 94955670400794, 581344596875918, 3561439696930289
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 6 of A207500

Examples

			Some solutions for n=4
..0..0..1..0..0..1....1..0..1..0..1..0....0..1..0..1..0..0....0..1..0..1..0..0
..0..0..1..0..0..1....0..1..0..0..1..0....1..0..1..0..1..0....1..1..1..1..1..1
..0..0..1..0..0..1....1..1..1..0..1..0....1..1..0..1..0..0....0..0..1..0..0..1
..0..0..1..0..0..1....1..0..1..0..1..0....1..1..1..1..1..0....1..1..1..1..1..0
		

Formula

Empirical: a(n) = 14*a(n-1) +29*a(n-2) -1135*a(n-3) +1334*a(n-4) +41801*a(n-5) -95619*a(n-6) -930468*a(n-7) +2649845*a(n-8) +14061339*a(n-9) -44531949*a(n-10) -153782559*a(n-11) +513955813*a(n-12) +1268284717*a(n-13) -4323228199*a(n-14) -8122717309*a(n-15) +27453042595*a(n-16) +41304642649*a(n-17) -134693996321*a(n-18) -169631226639*a(n-19) +518946014345*a(n-20) +569790977071*a(n-21) -1588299569143*a(n-22) -1578940833367*a(n-23) +3893050518502*a(n-24) +3627356972069*a(n-25) -7681599053950*a(n-26) -6920685329456*a(n-27) +12232494417499*a(n-28) +10957506877510*a(n-29) -15717504128604*a(n-30) -14358725835477*a(n-31) +16239508261914*a(n-32) +15507242940206*a(n-33) -13389245012700*a(n-34) -13725161001954*a(n-35) +8684851178462*a(n-36) +9883191760144*a(n-37) -4316851021696*a(n-38) -5735269358684*a(n-39) +1556717902748*a(n-40) +2648505812720*a(n-41) -349241905640*a(n-42) -956522388168*a(n-43) +12400217520*a(n-44) +263523136512*a(n-45) +23917848240*a(n-46) -53319501440*a(n-47) -9924197504*a(n-48) +7432734624*a(n-49) +2117787456*a(n-50) -626758464*a(n-51) -264414848*a(n-52) +20661120*a(n-53) +17834496*a(n-54) +817920*a(n-55) -474624*a(n-56) -55296*a(n-57) for n>58

A207499 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

25, 625, 3355, 17911, 122061, 804887, 5715255, 40046975, 287772089, 2061595205, 14914823863, 107929360177, 784430935831, 5706698690103, 41607085900821, 303627706072811, 2218432129234439, 16220034510311323, 118680071632234053
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 7 of A207500

Examples

			Some solutions for n=4
..1..1..1..1..0..0..1....1..0..1..0..1..0..0....1..0..1..0..1..0..1
..1..0..0..1..0..1..0....1..1..0..0..1..0..1....0..0..1..0..0..1..0
..1..1..1..1..0..0..1....1..1..1..0..1..0..0....1..0..1..0..1..0..1
..0..0..1..0..0..1..0....0..1..0..0..1..0..1....1..0..1..0..0..1..0
		

Formula

Empirical: a(n) = 18*a(n-1) +66*a(n-2) -2802*a(n-3) +3287*a(n-4) +202549*a(n-5) -594991*a(n-6) -9055565*a(n-7) +35807273*a(n-8) +281451314*a(n-9) -1320129061*a(n-10) -6483410366*a(n-11) +34378295343*a(n-12) +115302984880*a(n-13) -675141428095*a(n-14) -1629405069373*a(n-15) +10389151242309*a(n-16) +18705409385974*a(n-17) -128489348784529*a(n-18) -177653284835477*a(n-19) +1300561971191097*a(n-20) +1418377161511435*a(n-21) -10921178734784581*a(n-22) -9659482030287946*a(n-23) +76884075139291826*a(n-24) +56864499202570688*a(n-25) -457523374287874637*a(n-26) -292738188220855624*a(n-27) +2316547347584759449*a(n-28) +1329698182980001754*a(n-29) -10031643449844807108*a(n-30) -5358499084703527109*a(n-31) +37305440507234708547*a(n-32) +19191788243038652032*a(n-33) -119507141792729578909*a(n-34) -61004748090717877126*a(n-35) +330542045644618983443*a(n-36) +171514255554503017904*a(n-37) -790555627453888472557*a(n-38) -424694257955726097233*a(n-39) +1636313719658464847167*a(n-40) +922276764631174671962*a(n-41) -2931482918705846597209*a(n-42) -1749973778066924516735*a(n-43) +4543081947395214311895*a(n-44) +2892077285933850390399*a(n-45) -6082565085480842374095*a(n-46) -4151601341296454973514*a(n-47) +7020283556993245762117*a(n-48) +5163903621874878951386*a(n-49) -6962383319638011984497*a(n-50) -5551898403462398723696*a(n-51) +5906114391425654252428*a(n-52) +5146029295554634179985*a(n-53) -4257361213211101866675*a(n-54) -4099869656946550208362*a(n-55) +2582882796867857620436*a(n-56) +2797545905553856341380*a(n-57) -1299373096888677424682*a(n-58) -1627714050424538188568*a(n-59) +528436596879221754104*a(n-60) +803112362678893069316*a(n-61) -165043370977918807016*a(n-62) -333681250653817943240*a(n-63) +34313150485545919488*a(n-64) +115698836207328981632*a(n-65) -1504826595165613472*a(n-66) -33084418395467674240*a(n-67) -2226873263136821120*a(n-68) +7678289296799728192*a(n-69) +1087035298079278464*a(n-70) -1414038914443296384*a(n-71) -302800702032212992*a(n-72) +199754693346320896*a(n-73) +58359939872584704*a(n-74) -20448913579277312*a(n-75) -8011548881842176*a(n-76) +1347946367512576*a(n-77) +766056924463104*a(n-78) -37397454372864*a(n-79) -47805058990080*a(n-80) -1641961193472*a(n-81) +1695876120576*a(n-82) +158346510336*a(n-83) -24100208640*a(n-84) -3185049600*a(n-85) for n>86

A207501 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 297, 1004, 2942, 7305, 17911, 40262, 87990, 187012, 385400, 783726, 1564402, 3084097, 6019187, 11629307, 22307563, 42493220, 80468378, 151622295, 284370183, 531240776, 988874960, 1834816342, 3394683936, 6264203818, 11531988896
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 4 of A207500

Examples

			Some solutions for n=4
..1..1..0..1....1..0..1..0....1..1..0..1....1..1..0..1....1..1..1..1
..0..0..1..0....0..1..0..0....1..1..0..1....0..1..0..0....1..1..1..1
..1..1..1..1....1..0..1..0....0..1..0..0....1..1..0..1....1..1..1..1
..1..0..1..0....0..1..0..0....1..0..0..1....0..1..0..1....1..0..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) -3*a(n-4) +28*a(n-5) +4*a(n-6) -32*a(n-7) -15*a(n-8) +26*a(n-9) +8*a(n-10) -6*a(n-11) +8*a(n-12) -4*a(n-13) -13*a(n-14) -2*a(n-15) +11*a(n-16) -2*a(n-17) +a(n-18) -2*a(n-21) +a(n-22)

A207502 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

14, 196, 932, 3939, 14253, 41938, 122061, 319798, 813724, 2009628, 4807523, 11399943, 26611726, 61691519, 142452960, 327544544, 752851062, 1729196533, 3973096971, 9138133990, 21035634301, 48483600980, 111872215076, 258410783006
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 5 of A207500

Examples

			Some solutions for n=4
..1..0..0..1....0..1..0..0....1..1..1..0....1..1..0..0....0..0..1..0
..0..1..0..0....1..0..1..0....1..0..1..0....1..1..1..1....1..1..0..1
..1..1..0..1....1..1..0..0....0..1..0..0....0..0..1..0....1..0..1..0
..1..0..0..1....1..0..1..0....1..0..1..0....1..1..0..1....0..1..0..1
..0..1..0..0....1..1..0..0....1..1..0..0....1..1..1..0....1..1..1..1
		

Formula

Empirical: a(n) = 5*a(n-1) -a(n-2) -24*a(n-3) +99*a(n-5) -2*a(n-6) -235*a(n-7) -24*a(n-8) +372*a(n-9) +59*a(n-10) -396*a(n-11) +66*a(n-12) +186*a(n-13) -280*a(n-14) -50*a(n-15) +588*a(n-16) -124*a(n-17) -524*a(n-18) +148*a(n-19) +326*a(n-20) -212*a(n-21) -80*a(n-22) +226*a(n-23) -98*a(n-24) -116*a(n-25) +70*a(n-26) +86*a(n-27) -87*a(n-28) +21*a(n-29) +13*a(n-30) -4*a(n-31) -20*a(n-32) +17*a(n-33) -4*a(n-34) -a(n-35) +2*a(n-37) -a(n-38)

A207503 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

22, 484, 2974, 15495, 68745, 237576, 804887, 2408502, 6896518, 18962878, 49914553, 128946177, 325003322, 806285935, 1976689512, 4789781866, 11521436034, 27522800939, 65396285319, 154757348476, 364908847989, 858133879200
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 6 of A207500

Examples

			Some solutions for n=4
..1..1..1..1....0..1..0..0....0..0..1..0....1..1..0..1....0..0..1..0
..1..1..1..1....0..0..1..0....1..1..1..1....0..0..1..0....1..1..1..1
..1..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1....0..0..1..0
..1..0..0..1....0..0..1..0....1..1..0..1....0..0..1..0....1..1..1..1
..1..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1....0..0..1..0
..1..0..0..1....0..0..1..0....1..1..0..1....1..0..1..0....1..1..0..1
		

Formula

Empirical: a(n) = 6*a(n-1) -3*a(n-2) -38*a(n-3) +22*a(n-4) +194*a(n-5) -94*a(n-6) -661*a(n-7) +167*a(n-8) +1641*a(n-9) -33*a(n-10) -2924*a(n-11) -371*a(n-12) +3492*a(n-13) +537*a(n-14) -2673*a(n-15) +884*a(n-16) +883*a(n-17) -3594*a(n-18) +109*a(n-19) +5666*a(n-20) -239*a(n-21) -5142*a(n-22) +690*a(n-23) +2662*a(n-24) -1620*a(n-25) -546*a(n-26) +2396*a(n-27) -647*a(n-28) -1936*a(n-29) +781*a(n-30) +1000*a(n-31) -682*a(n-32) -128*a(n-33) +506*a(n-34) -251*a(n-35) -257*a(n-36) +181*a(n-37) +107*a(n-38) -128*a(n-39) +37*a(n-40) +32*a(n-41) -17*a(n-42) -21*a(n-43) +18*a(n-44) -5*a(n-45) -2*a(n-46) +a(n-47) +2*a(n-48) -a(n-49)

A207504 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

35, 1225, 9723, 62530, 343310, 1413961, 5715255, 20090516, 67370124, 216796950, 667696708, 2029712814, 6055036914, 17929790545, 52996398729, 156389908011, 463168251873, 1376399848038, 4108298709116, 12322769960737, 37117215785687
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 7 of A207500

Examples

			Some solutions for n=4
..1..1..1..1....0..1..0..0....0..1..0..0....0..1..0..0....0..0..1..0
..1..1..1..1....1..1..0..1....0..1..0..1....1..0..1..0....1..1..0..0
..1..0..1..0....1..0..0..1....0..1..0..0....0..1..0..0....1..1..1..0
..1..1..1..1....0..1..0..1....0..1..0..1....1..0..1..0....1..0..1..0
..0..1..0..1....1..1..0..1....0..1..0..1....0..1..0..0....1..1..1..0
..1..1..1..0....1..1..0..0....0..1..0..0....1..0..1..0....0..0..1..0
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..0....1..1..0..0
		

Formula

Empirical: a(n) = 7*a(n-1) -87*a(n-3) +44*a(n-4) +696*a(n-5) -395*a(n-6) -3907*a(n-7) +2044*a(n-8) +15727*a(n-9) -6955*a(n-10) -47163*a(n-11) +19943*a(n-12) +103304*a(n-13) -56805*a(n-14) -156350*a(n-15) +165115*a(n-16) +126712*a(n-17) -436222*a(n-18) +93943*a(n-19) +928117*a(n-20) -562039*a(n-21) -1519131*a(n-22) +1248418*a(n-23) +1814478*a(n-24) -2052689*a(n-25) -1321996*a(n-26) +2792544*a(n-27) -99622*a(n-28) -3210970*a(n-29) +2020784*a(n-30) +2910382*a(n-31) -3568700*a(n-32) -1678972*a(n-33) +4068898*a(n-34) -170210*a(n-35) -3413616*a(n-36) +1845998*a(n-37) +1925622*a(n-38) -2549098*a(n-39) -296726*a(n-40) +2195840*a(n-41) -872982*a(n-42) -1206724*a(n-43) +1249822*a(n-44) +209580*a(n-45) -949808*a(n-46) +352042*a(n-47) +415322*a(n-48) -475266*a(n-49) +21562*a(n-50) +305476*a(n-51) -177704*a(n-52) -90830*a(n-53) +145908*a(n-54) -38912*a(n-55) -62601*a(n-56) +69611*a(n-57) -2808*a(n-58) -38287*a(n-59) +19248*a(n-60) +9708*a(n-61) -16247*a(n-62) +5653*a(n-63) +6236*a(n-64) -5957*a(n-65) -371*a(n-66) +2501*a(n-67) -1209*a(n-68) -616*a(n-69) +939*a(n-70) -150*a(n-71) -209*a(n-72) +148*a(n-73) +14*a(n-74) -73*a(n-75) +17*a(n-76) +9*a(n-77) -7*a(n-78) +2*a(n-79) +2*a(n-80) -a(n-81)
Showing 1-10 of 10 results.