cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A207509 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 72, 166, 360, 660, 1292, 2400, 4396, 8096, 14580, 26346, 47336, 84502, 150976, 268594, 477130, 846850, 1500112, 2655880, 4697786, 8303004, 14669200, 25901790, 45719422, 80675866, 142317030, 251007562, 442623618, 780396916, 1375769956
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2012

Keywords

Comments

Column 3 of A207514.

Examples

			Some solutions for n=4:
..0..1..0....0..1..0....0..0..1....0..0..1....0..0..1....1..1..1....1..1..0
..1..1..1....0..0..1....1..0..0....1..0..1....1..0..0....1..1..0....1..1..1
..1..0..0....0..1..0....0..0..1....1..0..0....1..0..1....0..0..1....0..0..1
..0..0..1....0..1..0....1..0..0....0..0..1....0..0..1....1..1..1....1..1..0
		

Crossrefs

Cf. A207514.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-3) - 5*a(n-4) + a(n-5) - 4*a(n-6) + 5*a(n-7) - a(n-8) + 2*a(n-9) - a(n-10) for n>11.
Empirical g.f.: 2*x*(3 + 12*x + 5*x^3 - 7*x^4 - 15*x^5 - 6*x^6 - 16*x^7 + 12*x^8 - 6*x^9 + 2*x^10) / ((1 - x)*(1 - x - x^3)*(1 - x^2 - 3*x^3 - x^4 - x^5 + x^6)). - Colin Barker, Mar 05 2018

A207508 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 72, 438, 2638, 10340, 50322, 221672, 938572, 4001444, 16081184, 65882872, 265536422, 1041167756, 4136910380, 16075083164, 62441083194, 240925209706, 924668629616, 3528820338804, 13446998876758, 50858295309890
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2012

Keywords

Comments

Diagonal of A207514.

Examples

			Some solutions for n=4
..1..1..0..1....1..0..1..0....0..1..0..0....1..1..0..1....1..0..0..1
..1..1..1..1....0..1..0..1....0..0..1..0....1..0..1..0....1..1..0..1
..0..0..1..0....1..0..1..0....0..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..0....1..1..0..1....0..1..0..0....0..0..1..0....1..0..0..1
		

Crossrefs

Cf. A207514.

A207510 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 166, 438, 1042, 1992, 4168, 8174, 15881, 30801, 58335, 111083, 209072, 391336, 731541, 1358864, 2519079, 4655423, 8579122, 15779179, 28954160, 53037211, 96982948, 177063128, 322816525, 587759306, 1068885187, 1941639552, 3523372673
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 4 of A207514

Examples

			Some solutions for n=4
..1..1..0..0....1..0..0..1....1..1..0..1....1..1..0..1....1..1..0..0
..1..1..1..1....0..1..0..0....1..1..1..1....1..0..0..1....0..0..1..0
..0..0..1..0....1..1..0..1....0..0..1..0....0..1..0..0....0..1..0..0
..0..1..0..0....1..0..0..1....0..1..0..0....0..1..0..1....0..1..0..0
		

Formula

Empirical: a(n) = -a(n-1) +4*a(n-2) +14*a(n-3) +5*a(n-4) -31*a(n-5) -67*a(n-6) -28*a(n-7) +76*a(n-8) +171*a(n-9) +113*a(n-10) -61*a(n-11) -229*a(n-12) -197*a(n-13) -27*a(n-14) +154*a(n-15) +175*a(n-16) +71*a(n-17) -46*a(n-18) -89*a(n-19) -45*a(n-20) -6*a(n-21) +32*a(n-22) +12*a(n-23) +10*a(n-24) -7*a(n-25) -a(n-26) -2*a(n-27) +a(n-28) for n>32

A207511 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 360, 1042, 2638, 5334, 11465, 23663, 47894, 96640, 191362, 379376, 747730, 1463055, 2862068, 5581156, 10849490, 21083501, 40888242, 79201233, 153391120, 296676820, 573780370, 1109365604, 2143845429, 4144119537, 8008600858
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 5 of A207514

Examples

			Some solutions for n=4
..0..1..0..0..1....1..1..1..0..1....0..1..0..0..1....0..1..0..1..0
..1..0..0..1..0....1..1..0..0..1....1..0..0..1..0....1..1..1..0..1
..1..1..0..0..1....0..0..1..0..0....0..1..0..0..1....1..0..0..1..0
..0..1..0..0..1....0..1..0..0..1....1..0..0..1..0....0..1..0..0..1
		

Formula

Empirical: a(n) = -3*a(n-1) +a(n-2) +26*a(n-3) +52*a(n-4) -4*a(n-5) -214*a(n-6) -401*a(n-7) -149*a(n-8) +783*a(n-9) +1727*a(n-10) +1346*a(n-11) -1132*a(n-12) -4190*a(n-13) -4736*a(n-14) -769*a(n-15) +5465*a(n-16) +8743*a(n-17) +5252*a(n-18) -2947*a(n-19) -9291*a(n-20) -8472*a(n-21) -1348*a(n-22) +5797*a(n-23) +7549*a(n-24) +3456*a(n-25) -1853*a(n-26) -4270*a(n-27) -2823*a(n-28) -93*a(n-29) +1519*a(n-30) +1333*a(n-31) +326*a(n-32) -322*a(n-33) -409*a(n-34) -114*a(n-35) +52*a(n-36) +105*a(n-37) +29*a(n-38) -2*a(n-39) -16*a(n-40) -3*a(n-41) +a(n-43) for n>49

A207512 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

18, 324, 660, 1992, 5334, 10340, 22960, 46826, 94601, 192192, 375592, 746568, 1463672, 2848131, 5567402, 10787309, 20928995, 40520266, 78275905, 151304457, 291889743, 563242937, 1086277275, 2094265839, 4038763494, 7785977121
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 6 of A207514

Examples

			Some solutions for n=4
..0..0..1..0..1..0....1..0..1..0..1..0....1..1..1..1..0..1....1..0..1..0..0..1
..1..0..0..1..0..0....1..1..1..1..0..1....0..0..1..0..0..1....1..0..0..1..0..0
..0..0..1..0..1..0....0..1..0..0..1..0....1..1..0..1..0..0....0..0..1..0..0..1
..0..0..1..0..1..0....0..0..1..0..0..1....1..0..0..1..0..0....0..0..1..0..0..1
		

Formula

Empirical: a(n) = -4*a(n-1) +36*a(n-3) +84*a(n-4) -12*a(n-5) -404*a(n-6) -732*a(n-7) -7*a(n-8) +2152*a(n-9) +3737*a(n-10) +1128*a(n-11) -6329*a(n-12) -12308*a(n-13) -7232*a(n-14) +10340*a(n-15) +26567*a(n-16) +21940*a(n-17) -7013*a(n-18) -37776*a(n-19) -39525*a(n-20) -5456*a(n-21) +36222*a(n-22) +46948*a(n-23) +16831*a(n-24) -25388*a(n-25) -40656*a(n-26) -18644*a(n-27) +15479*a(n-28) +29192*a(n-29) +14445*a(n-30) -9216*a(n-31) -19082*a(n-32) -10036*a(n-33) +4571*a(n-34) +11156*a(n-35) +6651*a(n-36) -1244*a(n-37) -5277*a(n-38) -3772*a(n-39) -251*a(n-40) +1740*a(n-41) +1555*a(n-42) +332*a(n-43) -361*a(n-44) -444*a(n-45) -107*a(n-46) +56*a(n-47) +107*a(n-48) +28*a(n-49) -2*a(n-50) -16*a(n-51) -3*a(n-52) +a(n-54) for n>60

A207513 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

25, 625, 1292, 4168, 11465, 22960, 50322, 105370, 214519, 434467, 859485, 1700263, 3341334, 6498994, 12653384, 24514485, 47342410, 91409818, 176001232, 338633421, 651272262, 1250858298, 2403095620, 4614434368, 8859453967, 17015312734
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 7 of A207514

Examples

			Some solutions for n=4
..1..1..1..0..0..1..0....0..1..0..1..0..0..1....1..1..1..1..0..1..0
..1..0..0..1..0..0..1....0..0..1..0..0..1..0....1..1..0..1..0..0..1
..0..0..1..0..0..1..0....0..1..0..1..0..0..1....0..0..1..0..0..1..0
..1..0..0..1..0..0..1....0..0..1..0..0..1..0....1..1..1..1..0..0..1
		

Formula

Empirical: a(n) = -4*a(n-1) +2*a(n-2) +44*a(n-3) +83*a(n-4) -88*a(n-5) -571*a(n-6) -668*a(n-7) +885*a(n-8) +3568*a(n-9) +3263*a(n-10) -3896*a(n-11) -13406*a(n-12) -11680*a(n-13) +9170*a(n-14) +33932*a(n-15) +30965*a(n-16) -12176*a(n-17) -61050*a(n-18) -59008*a(n-19) +8300*a(n-20) +81696*a(n-21) +81692*a(n-22) -1856*a(n-23) -88125*a(n-24) -86964*a(n-25) +1429*a(n-26) +84536*a(n-27) +77400*a(n-28) -5856*a(n-29) -74000*a(n-30) -60856*a(n-31) +8163*a(n-32) +56232*a(n-33) +41701*a(n-34) -7180*a(n-35) -36018*a(n-36) -24376*a(n-37) +5074*a(n-38) +19908*a(n-39) +12383*a(n-40) -3116*a(n-41) -9871*a(n-42) -5676*a(n-43) +1555*a(n-44) +4404*a(n-45) +2421*a(n-46) -464*a(n-47) -1595*a(n-48) -860*a(n-49) +38*a(n-50) +428*a(n-51) +215*a(n-52) +4*a(n-53) -102*a(n-54) -44*a(n-55) -3*a(n-56) +16*a(n-57) +4*a(n-58) -a(n-60) for n>67
Showing 1-6 of 6 results.