This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207536 #16 Jan 22 2020 17:37:24 %S A207536 1,1,2,1,6,1,12,4,1,20,20,1,30,60,8,1,42,140,56,1,56,280,224,16,1,72, %T A207536 504,672,144,1,90,840,1680,720,32,1,110,1320,3696,2640,352,1,132,1980, %U A207536 7392,7920,2112,64,1,156,2860,13728,20592,9152,832,1,182,4004 %N A207536 Triangle of coefficients of polynomials u(n,x) jointly generated with A105070; see Formula section. %C A207536 Subtriangle of the triangle given by (1, 0, 1, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 08 2012 %F A207536 u(n,x) = u(n-1,x) + 2x*v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x), %F A207536 where u(1,x)=1, v(1,x)=1. %F A207536 From _Philippe Deléham_, Apr 08 2012: (Start) %F A207536 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A207536 G.f.: (1-x)/(1-2*x+x^2-2*y*x^2). %F A207536 T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. %F A207536 T(n,k) = A034839(n,k)*2^k = binomial(n,2*k)*2^k . (End) %e A207536 First seven rows: %e A207536 1; %e A207536 1, 2; %e A207536 1, 6, %e A207536 1, 12, 4; %e A207536 1, 20, 20, %e A207536 1, 30, 60, 8; %e A207536 1, 42, 140, 56; %e A207536 From _Philippe Deléham_, Apr 08 2012: (Start) %e A207536 (1, 0, 1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins: %e A207536 1; %e A207536 1, 0; %e A207536 1, 2, 0; %e A207536 1, 6, 0, 0; %e A207536 1, 12, 4, 0, 0; %e A207536 1, 20, 20, 0, 0, 0; %e A207536 1, 30, 60, 8, 0, 0, 0; %e A207536 1, 42, 140, 56, 0, 0, 0, 0; (End) %t A207536 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A207536 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] %t A207536 v[n_, x_] := u[n - 1, x] + v[n - 1, x] %t A207536 Table[Factor[u[n, x]], {n, 1, z}] %t A207536 Table[Factor[v[n, x]], {n, 1, z}] %t A207536 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A207536 TableForm[cu] %t A207536 Flatten[%] (* A207536 *) %t A207536 Table[Expand[v[n, x]], {n, 1, z}] %t A207536 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A207536 TableForm[cv] %t A207536 Flatten[%] (* A105070 *) %Y A207536 Cf. A105070. %K A207536 nonn,tabf %O A207536 1,3 %A A207536 _Clark Kimberling_, Feb 18 2012