A207537 Triangle of coefficients of polynomials u(n,x) jointly generated with A207538; see Formula section.
1, 2, 1, 4, 3, 8, 8, 1, 16, 20, 5, 32, 48, 18, 1, 64, 112, 56, 7, 128, 256, 160, 32, 1, 256, 576, 432, 120, 9, 512, 1280, 1120, 400, 50, 1, 1024, 2816, 2816, 1232, 220, 11, 2048, 6144, 6912, 3584, 840, 72, 1, 4096, 13312, 16640, 9984, 2912, 364, 13
Offset: 1
Examples
First seven rows: 1; 2, 1; 4, 3; 8, 8, 1; 16, 20, 5, 32, 48, 18, 1; 64, 112, 56, 7; From _Philippe Deléham_, Mar 03 2012: (Start) Triangle A201701 begins: 1; 1, 0; 2, 1, 0; 4, 3, 0, 0; 8, 8, 1, 0, 0; 16, 20, 5, 0, 0, 0; 32, 48, 18, 1, 0, 0, 0; 64, 112, 56, 7, 0, 0, 0, 0; ... (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] v[n_, x_] := u[n - 1, x] + v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207537, |A028297| *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207538, |A133156| *) (* Prepending 1 and with offset 0: *) Tpoly[n_] := HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {1/2}, x + 1]; Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x), where u(1,x)=1, v(1,x)=1. Also, A207537 = |A028297|.
T(n,k) = 2*T(n-1,k) + T(n-2,k-1). - Philippe Deléham, Mar 03 2012
G.f.: -(1+x*y)*x*y/(-1+2*x+x^2*y). - R. J. Mathar, Aug 11 2015
T(n, k) = [x^k] hypergeom([-n/2, -n/2 + 1/2], [1/2], x + 1) provided offset is set to 0 and 1 prepended. - Peter Luschny, Feb 03 2021
Comments