cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207545 Number of nX3 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

26, 676, 14974, 327899, 7104784, 153718531, 3323115736, 71828785449, 1552463878141, 33553506212607, 725189754458127, 15673455950921338, 338748698841773309, 7321337736630455158, 158235245543724632042
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 3 of A207550

Examples

			Some solutions for n=4
..0..0..2....2..2..2....2..1..0....2..0..1....2..1..0....2..2..1....1..2..2
..0..0..2....1..2..1....0..1..1....2..0..2....2..1..2....2..0..0....0..0..1
..0..0..0....0..2..2....1..0..0....2..0..2....0..1..1....2..0..0....1..2..0
..1..2..0....0..0..2....1..2..2....2..0..1....0..1..1....2..2..2....1..2..1
		

Formula

Empirical: a(n) = 25*a(n-1) -14*a(n-2) -1439*a(n-3) +2416*a(n-4) +24494*a(n-5) -42148*a(n-6) -155315*a(n-7) +298717*a(n-8) +465648*a(n-9) -796742*a(n-10) -772730*a(n-11) -248746*a(n-12) +448619*a(n-13) +4500187*a(n-14) +1535833*a(n-15) -6305900*a(n-16) -2969844*a(n-17) +2515810*a(n-18) +1396963*a(n-19) +20165*a(n-20) +11517*a(n-21) -177480*a(n-22) -113665*a(n-23) +8548*a(n-24) +5517*a(n-25) +252*a(n-26)

A207546 Number of nX4 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

75, 5625, 327518, 18584111, 1033847229, 57282563287, 3168082336959, 175129179194410, 9679245343889980, 534934649110777869, 29563222154411441671, 1633804995808428069508, 90291695709459901168342
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 4 of A207550

Examples

			Some solutions for n=4
..0..2..0..1....0..1..0..1....1..1..1..0....2..0..0..1....2..0..1..1
..2..0..1..0....2..2..0..0....1..2..1..2....1..1..0..1....2..1..0..1
..0..2..1..1....0..2..2..0....0..1..0..1....0..0..1..0....1..0..2..2
..2..0..0..1....0..1..0..1....2..0..0..1....1..1..0..0....1..0..0..0
		

Formula

Empirical: a(n) = 69*a(n-1) -243*a(n-2) -35253*a(n-3) +296678*a(n-4) +5187655*a(n-5) -53944260*a(n-6) -214018350*a(n-7) +4021412585*a(n-8) -774565135*a(n-9) -150771495409*a(n-10) +312583115868*a(n-11) +1817375504144*a(n-12) -9590505061416*a(n-13) +57822275349731*a(n-14) +60994982920448*a(n-15) -2195568127977152*a(n-16) +4830930957723462*a(n-17) +17315992408942079*a(n-18) -180973013112390706*a(n-19) +244527031174440701*a(n-20) +3199094062885156463*a(n-21) -5079754235888249640*a(n-22) -33991062409722002066*a(n-23) +32671315897444855908*a(n-24) +225748919152121969648*a(n-25) -110719494436896570773*a(n-26) -949722689455784413596*a(n-27) +560883038663276920585*a(n-28) +2858373572723006833737*a(n-29) -4312303150784893201423*a(n-30) -7782416648110459342691*a(n-31) +21774017937864765356109*a(n-32) +18278870738655349400816*a(n-33) -76992008974013289332698*a(n-34) -27151674817718145278142*a(n-35) +231454134725024215114716*a(n-36) +54846176972788445128666*a(n-37) -572713252394808422296077*a(n-38) -245663809469357116996983*a(n-39) +1037772549073803319659925*a(n-40) +691192386654240660327302*a(n-41) -1435361370615280544538177*a(n-42) -1320996823214328541283861*a(n-43) +1583801848172537353834697*a(n-44) +2069472386564853807998144*a(n-45) -1044955872285596610324027*a(n-46) -2359047375747711421360543*a(n-47) -163548447934659825622339*a(n-48) +1446340554043721973068756*a(n-49) +732837349830549604383521*a(n-50) -183312088845454016741453*a(n-51) -303132824754893110273378*a(n-52) -146942294211472160732448*a(n-53) -4464709080187731921358*a(n-54) +47238860197575186368527*a(n-55) +17421526996256865234276*a(n-56) -4445298778743441137829*a(n-57) -1067503766311095478877*a(n-58) +2373940612611933859914*a(n-59) +828612588224656439490*a(n-60) -670372516173182999005*a(n-61) -455880302512767974058*a(n-62) +59347613034080016649*a(n-63) +101830928257869853042*a(n-64) -1937745762621271014*a(n-65) -18728640219295271912*a(n-66) -1794314623891509765*a(n-67) +2404519648874504342*a(n-68) +614714057585292099*a(n-69) -125416047318381885*a(n-70) -66477197064352636*a(n-71) +787928093212605*a(n-72) +4046106404343321*a(n-73) +75119336268022*a(n-74) -188485496234149*a(n-75) +2389387061818*a(n-76) +5856655206581*a(n-77) -421364084783*a(n-78) -104517622032*a(n-79) +7679376288*a(n-80) +292012560*a(n-81) -75600*a(n-82)

A207547 Number of nX5 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

216, 46656, 7169168, 1058580304, 151596413811, 21553876840265, 3054158366460488, 432330439527473859, 61173307041263346298, 8654652528939212249147, 1224376462168696645919384
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 5 of A207550

Examples

			Some solutions for n=4
..0..1..0..1..0....2..1..1..0..0....0..0..1..1..1....0..2..0..2..2
..1..2..1..1..2....1..2..0..0..2....0..2..1..0..2....0..0..2..2..1
..0..2..1..2..0....0..2..1..2..0....2..2..0..1..0....2..1..2..0..2
..0..0..2..1..0....2..1..1..0..0....0..2..2..0..2....1..0..0..1..1
		

A207548 Number of nX6 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

622, 386884, 156957792, 60409681388, 22310125127129, 8153351029428092, 2964756265273648883, 1076286546346567521098, 390457995759108924185709, 141617212846936717614354649, 51359069670561256115498236262
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 6 of A207550

Examples

			Some solutions for n=4
..2..0..2..2..0..0....1..1..2..2..1..2....2..2..0..0..2..0....0..2..0..2..0..2
..0..2..1..2..2..0....1..1..2..1..1..1....2..2..1..1..2..1....1..0..2..0..2..0
..1..1..2..1..2..2....2..0..1..0..1..0....1..1..0..0..0..0....0..0..0..1..1..0
..0..0..1..0..2..1....1..1..2..0..0..2....2..0..1..0..0..2....1..1..1..0..1..1
		

A207549 Number of nX7 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

1791, 3207681, 3434478282, 3444706587880, 3281119335987704, 3082694275519480041, 2876868686935789680075, 2678620674955838194068380, 2491610702126355619980595983, 2316819788394652271932508770307
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Column 7 of A207550

Examples

			Some solutions for n=4
..1..1..0..2..2..0..2....1..1..0..2..1..1..2....2..1..1..0..0..0..1
..0..1..1..1..2..0..1....1..1..0..1..0..0..1....1..2..0..0..2..1..2
..0..1..0..1..1..2..2....0..1..0..0..0..2..2....0..2..1..2..0..0..0
..2..2..0..1..0..1..0....1..1..1..2..2..2..0....2..1..1..0..0..0..0
		

A207551 Number of 3Xn 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

26, 676, 14974, 327518, 7169168, 156957792, 3434478282, 75148438711, 1644205521524, 35974053130024, 787081975249822, 17220673773304768, 376773189954832060, 8243464731968266960, 180359713794644968034
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 3 of A207550

Examples

			Some solutions for n=4
..1..2..0..2....2..2..2..2....2..0..2..1....1..1..1..2....0..2..2..0
..0..0..2..0....0..0..0..0....2..0..0..0....1..1..1..1....0..0..0..0
..1..2..2..2....1..2..2..1....0..2..0..1....2..1..2..2....0..2..1..0
		

Formula

Empirical: a(n) = 26*a(n-1) -16*a(n-2) -1876*a(n-3) +4292*a(n-4) +30528*a(n-5) -63675*a(n-6) -102108*a(n-7) -7290*a(n-8) -8276*a(n-9) +1540054*a(n-10) -8712728*a(n-11) +14630137*a(n-12) +66316954*a(n-13) -83820630*a(n-14) -96411600*a(n-15) -100641171*a(n-16) -89584866*a(n-17) +324694661*a(n-18) +23361212*a(n-19) +278938916*a(n-20) +273589832*a(n-21) -134950279*a(n-22) -86365344*a(n-23) +5316948*a(n-24) +71280*a(n-25) for n>26

A207552 Number of 4Xn 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

75, 5625, 327899, 18584111, 1058580304, 60409681388, 3444706587880, 196394845077515, 11195823351575374, 638229931665914988, 36382525031488738507, 2073995028464244989213, 118228412844652091729417
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 4 of A207550

Examples

			Some solutions for n=4
..1..2..2..2....2..0..2..1....0..1..0..1....0..2..2..2....0..2..2..0
..1..2..2..2....1..1..1..0....2..2..0..0....1..1..0..2....1..0..0..0
..1..2..1..1....0..1..0..0....0..2..2..0....0..0..1..0....0..2..1..2
..1..2..1..1....0..0..0..2....0..1..0..1....1..2..0..2....0..0..0..0
		

Formula

Empirical: a(n) = 75*a(n-1) -279*a(n-2) -55870*a(n-3) +619132*a(n-4) +10624995*a(n-5) -156435360*a(n-6) +39418367*a(n-7) +5687446019*a(n-8) -21387539810*a(n-9) -181413061607*a(n-10) -8122558142777*a(n-11) +174711294553294*a(n-12) +271009683894939*a(n-13) -17128383533321188*a(n-14) +48859766137607182*a(n-15) +461407352658224631*a(n-16) -2945675982691138809*a(n-17) +80741757045081747*a(n-18) +40694340239333081561*a(n-19) +157436282168932316087*a(n-20) -42613038335884776174*a(n-21) -12555254076232039300039*a(n-22) -398520064754470669298*a(n-23) +98261567049022818742453*a(n-24) +385220149334799454031470*a(n-25) +1694946849392014061968803*a(n-26) -6898177055859138399041213*a(n-27) +10382419400329305661128592*a(n-28) -32486113181923436526347669*a(n-29) -91335785940915840531363442*a(n-30) -113684752291904604808932379*a(n-31) -9385342750282519992420459634*a(n-32) -5962984156845168458650601941*a(n-33) -3290052418044587020636101133*a(n-34) +390431134543126408967068386996*a(n-35) +1671332411744587959635356602825*a(n-36) +605817399675182945833734501379*a(n-37) -5394700124761981852860687818580*a(n-38) -38891579765757791265654651009506*a(n-39) -85254942373459529111094361622908*a(n-40) +88138047110638120620395065197599*a(n-41) +494917417422017700927771301664685*a(n-42) +730895329783806063136778873718495*a(n-43) +44342324913932344382625405651072*a(n-44) -2661994706130840361481235753607186*a(n-45) -3911211545863208522953734063754091*a(n-46) +694006368783166401443310548945392*a(n-47) +4553798909030774318377963641677907*a(n-48) -3095976452858854702138090405407431*a(n-49) -5271152450140277198264725519192111*a(n-50) +20511134636727946507199026102941950*a(n-51) -3239231917823883733378987130418937*a(n-52) -19126308441097367758751736218169813*a(n-53) +115334926904709129120726579154421370*a(n-54) +149382584193469641170827505193901082*a(n-55) -7496484819143085850598439939157585*a(n-56) -378514228457350956384509768199380974*a(n-57) -272147270677516132958521543918559547*a(n-58) +444632620936963019767786610781319087*a(n-59) -682480346100455227127760311024682326*a(n-60) -1146244761251614560376306626539376217*a(n-61) +1003565192705309430616062069158959327*a(n-62) +812021949941329528016210005819004900*a(n-63) +85289222154913494869354114685081364*a(n-64) +496696181001264855780427345598595524*a(n-65) -35495667004939466785691099443265075*a(n-66) +362274493206232460059329428250869320*a(n-67) +200200088399602607233798737566898311*a(n-68) -724099300431597339511136441697717175*a(n-69) -531801599121338912985168632281238844*a(n-70) -302908746969740988440308774718603739*a(n-71) -80628939194816129553497724120399695*a(n-72) +298348511932512499268012191150119774*a(n-73) +264531003513916653200178954689258607*a(n-74) +91075357585036134921702117644612217*a(n-75) +8283986612308793542747753431284049*a(n-76) -23715390868357358678749908455870388*a(n-77) -4323514054082035821393595296901788*a(n-78) -978421399443985871460393582212952*a(n-79) +591619497879209549755509425398320*a(n-80) -10477109907725865000820036210944*a(n-81) -58252279609612899809401165458480*a(n-82) -15192438392839658696670214502784*a(n-83) -506772856534295798758574513280*a(n-84) -1220373945635059110430859592960*a(n-85) for n>88

A207553 Number of 5 X n 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

216, 46656, 7104784, 1033847229, 151596413811, 22310125127129, 3281119335987704, 482409110595369417, 70913221471442436735, 10423970912644421821948, 1532250473752733562395242
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 5 of A207550.

Examples

			Some solutions for n=4
..0..2..2..0....1..0..2..0....2..0..1..0....2..2..1..2....2..1..0..0
..0..1..0..1....1..0..0..0....0..2..1..0....2..2..1..0....1..1..1..0
..1..2..0..0....2..1..0..0....2..1..2..1....0..1..0..1....0..1..0..2
..1..2..2..2....0..0..0..0....2..2..1..0....0..1..0..0....2..0..2..1
..1..2..1..1....2..0..0..1....0..2..2..2....0..2..0..0....1..1..1..0
		

Crossrefs

Cf. A207550.

A207554 Number of 6Xn 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

622, 386884, 153718531, 57282563287, 21553876840265, 8153351029428092, 3082694275519480041, 1165102509595020126200, 440237796175859581158560, 166342251234958398609975741, 62849915005715508846282647469
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 6 of A207550

Examples

			Some solutions for n=4
..2..2..1..2....2..2..1..0....1..2..2..0....1..2..2..2....2..1..0..2
..2..2..1..0....1..1..0..0....0..1..1..2....1..2..2..2....1..2..2..1
..0..1..0..1....2..0..0..0....0..1..0..1....1..2..1..1....1..0..1..1
..0..1..0..0....0..1..1..0....2..2..0..0....1..2..1..1....0..0..2..0
..0..2..0..0....0..1..0..0....0..2..2..0....1..1..1..0....0..2..0..0
..0..1..0..2....2..2..0..1....0..1..0..1....1..2..1..2....0..1..0..0
		

A207555 Number of 7Xn 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

Original entry on oeis.org

1791, 3207681, 3323115736, 3168082336959, 3054158366460488, 2964756265273648883, 2876868686935789680075, 2790347210410991592878863, 2705587415313932036439553600, 2623332913249978851468865268215
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Row 7 of A207550

Examples

			Some solutions for n=4
..0..2..2..1....2..1..0..2....0..2..2..2....0..1..1..2....0..2..0..2
..1..2..2..1....1..2..2..1....1..1..0..2....0..1..0..1....2..2..0..2
..0..0..1..1....1..0..1..1....0..0..1..0....2..2..0..0....2..0..1..0
..2..1..1..0....0..0..2..0....1..2..0..2....0..2..2..0....0..2..1..0
..1..0..0..1....0..2..0..0....1..0..2..0....0..1..0..1....2..1..2..1
..1..2..0..0....0..1..0..0....1..0..0..0....1..2..0..0....2..2..1..0
..2..2..1..2....1..2..0..0....2..1..0..0....1..2..2..2....0..2..2..2
		
Showing 1-10 of 11 results. Next