cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207592 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 312, 1014, 3094, 9698, 30056, 93782, 291304, 908102, 2822456, 8795098, 27344824, 85186790, 264915456, 825119802, 2566427032, 7992283078, 24862380608, 77416150058, 240852113528, 749890083670, 2333208210944, 7263866039898
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 5 of A207589.

Examples

			Some solutions for n=4:
  1 0 1 0     1 1 1 1     1 0 1 0     1 0 1 1     0 1 1 1
  0 1 0 0     1 0 1 1     1 1 1 0     1 1 1 1     1 0 1 1
  1 1 1 0     0 1 0 0     0 1 0 0     0 1 0 0     1 1 0 0
  1 0 1 0     1 0 1 1     1 0 1 0     1 0 1 0     0 1 1 0
  0 1 0 0     0 1 0 0     0 1 0 0     1 1 1 0     1 0 1 0
		

Crossrefs

Cf. A207589.

Formula

Empirical: a(n) = -a(n-1) + 11*a(n-2) + 13*a(n-3) - 18*a(n-4) - 18*a(n-5) + 6*a(n-6) + 4*a(n-7) for n>9.
Empirical g.f.: 13*x*(1 + 14*x + 26*x^2 - 54*x^3 - 99*x^4 + 66*x^5 + 86*x^6 - 20*x^7 - 16*x^8) / ((1 + x)*(1 - 11*x^2 - 2*x^3 + 20*x^4 - 2*x^5 - 4*x^6)). - Colin Barker, Jun 24 2018