cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207593 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

This page as a plain text file.
%I A207593 #12 Jun 25 2018 03:51:37
%S A207593 18,324,612,2232,7272,25776,85536,300096,1004364,3501756,11782620,
%T A207593 40900716,138145104,477983232,1619007480,5587936560,18968405364,
%U A207593 65343675996,222184777860,764259590844,2602091320056,8940128392080
%N A207593 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.
%C A207593 Row 6 of A207589.
%H A207593 R. H. Hardin, <a href="/A207593/b207593.txt">Table of n, a(n) for n = 1..210</a>
%F A207593 Empirical: a(n) = -a(n-1) + 16*a(n-2) + 18*a(n-3) - 61*a(n-4) - 61*a(n-5) + 66*a(n-6) + 58*a(n-7) - 8*a(n-8) - 8*a(n-9) for n>11.
%F A207593 Empirical g.f.: 18*x*(1 + 19*x + 36*x^2 - 148*x^3 - 279*x^4 + 399*x^5 + 594*x^6 - 368*x^7 - 410*x^8 + 44*x^9 + 52*x^10) / (1 + x - 16*x^2 - 18*x^3 + 61*x^4 + 61*x^5 - 66*x^6 - 58*x^7 + 8*x^8 + 8*x^9). - _Colin Barker_, Jun 24 2018
%e A207593 Some solutions for n=4:
%e A207593   1 0 1 1     1 1 0 0     0 1 0 1     0 1 0 0     0 1 1 1
%e A207593   0 1 0 1     0 1 1 0     1 1 1 0     1 0 1 0     1 1 0 1
%e A207593   1 0 1 0     1 0 1 0     1 0 1 1     1 1 1 0     1 0 1 0
%e A207593   0 1 0 1     0 1 0 0     0 1 0 0     0 1 0 0     0 1 1 0
%e A207593   1 1 1 0     1 0 1 0     1 0 1 1     1 0 1 0     1 1 0 0
%e A207593   1 0 1 0     1 0 1 0     0 1 1 0     1 1 0 0     1 0 1 0
%Y A207593 Cf. A207589.
%K A207593 nonn
%O A207593 1,1
%A A207593 _R. H. Hardin_, Feb 19 2012