cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207600 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

6, 36, 90, 225, 825, 3025, 9240, 28224, 93912, 312481, 997815, 3186225, 10377990, 33802596, 109041570, 351750025, 1140060185, 3695059369, 11948292720, 38635833600, 125075648880, 404906960329, 1310059883431, 4238645087209
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 3 of A207599.

Examples

			Some solutions for n=4
..0..1..1..1....1..0..0..1....1..0..1..1....1..0..1..1....0..1..1..0
..1..1..1..1....0..1..1..1....0..0..1..1....1..1..1..1....1..1..1..0
..1..0..1..1....0..1..1..0....0..0..1..1....1..0..1..1....0..1..1..0
		

Crossrefs

Cf. A207599.

Formula

Empirical: a(n) = a(n-1) -2*a(n-2) +11*a(n-3) +43*a(n-4) +34*a(n-5) +108*a(n-6) -216*a(n-8) -136*a(n-9) -344*a(n-10) -176*a(n-11) +64*a(n-12) -64*a(n-13) +128*a(n-14).

A207595 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 90, 441, 3915, 42025, 292600, 1982464, 21925800, 268730449, 2281109103, 19215781641, 242188032450, 3266593546384, 32361595709850, 320442399819025, 4434278073813775, 64468102969055809, 723471023371037040
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207599

Examples

			Some solutions for n=4
..1..1..1..1....1..0..0..1....1..1..0..1....1..0..0..1....1..0..1..1
..1..1..1..0....0..1..1..0....1..0..1..1....1..0..1..1....0..0..1..1
..1..1..1..0....0..1..1..0....0..0..1..1....0..0..1..1....0..0..1..1
..1..1..0..0....0..1..1..0....0..0..1..1....0..0..1..1....0..0..1..1
		

A207596 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

15, 225, 825, 1995, 3915, 6765, 10725, 15975, 22695, 31065, 41265, 53475, 67875, 84645, 103965, 126015, 150975, 179025, 210345, 245115, 283515, 325725, 371925, 422295, 477015, 536265, 600225, 669075, 742995, 822165, 906765, 996975, 1092975
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 5 of A207599.

Examples

			Some solutions for n=4:
..1..1..0..0..1....0..1..1..0..1....1..0..1..1..0....0..1..1..1..1
..1..0..1..1..0....1..0..1..1..0....1..0..1..1..1....1..0..1..1..1
..0..0..1..1..0....0..0..1..1..0....0..0..1..1..1....0..0..1..1..0
..0..0..1..1..0....0..0..1..1..0....0..0..1..1..0....0..0..1..1..0
		

Crossrefs

Cf. A207599.

Formula

Empirical: a(n) = 30*n^3 + 15*n^2 - 45*n + 15.
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: 15*x*(1 + 11*x + x^2 - x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A207597 Number of n X 6 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

25, 625, 3025, 9025, 21025, 42025, 75625, 126025, 198025, 297025, 429025, 600625, 819025, 1092025, 1428025, 1836025, 2325625, 2907025, 3591025, 4389025, 5313025, 6375625, 7590025, 8970025, 10530025, 12285025, 14250625, 16443025, 18879025
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 6 of A207599.

Examples

			Some solutions for n=4:
..0..1..1..0..1..1....1..1..1..1..1..1....1..0..1..1..1..1....0..0..1..1..0..0
..1..1..1..1..0..1....0..0..1..1..1..1....0..0..1..1..0..0....0..0..1..1..1..1
..1..0..1..1..0..0....0..0..1..1..0..0....0..0..1..1..0..0....0..0..1..1..0..0
..0..0..1..1..0..0....0..0..1..1..0..0....0..0..1..1..0..0....0..0..1..1..0..0
		

Crossrefs

Cf. A207599.

Formula

Empirical: a(n) = 25*n^4 + 50*n^3 - 25*n^2 - 50*n + 25.
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: 25*x*(1 + 20*x + 6*x^2 - 4*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207598 Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

40, 1600, 9240, 30400, 75400, 157440, 292600, 499840, 801000, 1220800, 1786840, 2529600, 3482440, 4681600, 6166200, 7978240, 10162600, 12767040, 15842200, 19441600, 23621640, 28441600, 33963640, 40252800, 47377000, 55407040, 64416600
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 7 of A207599.

Examples

			Some solutions for n=4:
..1..1..0..0..1..1..1....0..1..1..1..1..1..1....1..1..0..1..1..0..1
..0..1..1..1..1..0..1....0..0..1..1..1..1..1....1..0..1..1..1..0..1
..0..1..1..1..1..0..1....0..0..1..1..0..0..1....0..0..1..1..0..0..1
..0..0..1..1..0..0..1....0..0..1..1..0..0..1....0..0..1..1..0..0..1
		

Crossrefs

Cf. A207599.

Formula

Empirical: a(n) = 120*n^4 + 40*n^3 - 200*n^2 + 80*n.
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: 40*x*(1 + 35*x + 41*x^2 - 5*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207601 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

8, 64, 168, 441, 1995, 9025, 30400, 102400, 403520, 1590121, 5746377, 20766249, 78708504, 298321984, 1101003640, 4063425025, 15221477315, 57019231369, 211813620480, 786839961600, 2936720666880, 10960714625809, 40800212085841
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 4 of A207599

Examples

			Some solutions for n=4
..0..1..1..0....1..0..0..1....1..1..0..0....0..1..1..1....1..0..0..1
..0..0..1..1....1..0..1..1....0..0..1..1....0..1..1..1....0..1..1..0
..0..0..1..1....1..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0
..0..0..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0
		

Formula

Empirical: a(n) = a(n-1) -3*a(n-2) +16*a(n-3) +88*a(n-4) +72*a(n-5) +312*a(n-6) -936*a(n-8) -648*a(n-9) -2376*a(n-10) -1296*a(n-11) +729*a(n-12) -729*a(n-13) +2187*a(n-14)

A207602 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 270, 729, 3915, 21025, 75400, 270400, 1223560, 5536609, 21791133, 85766121, 366828210, 1568952100, 6380972950, 25951599025, 108806945995, 456193527241, 1877616346320, 7727955206400, 32166490458960, 133888341846169
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 5 of A207599

Examples

			Some solutions for n=4
..1..1..1..1....1..1..0..0....0..1..1..1....1..1..1..0....1..1..1..1
..1..1..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..1
..1..1..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0
..1..1..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0
..1..0..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0
		

Formula

Empirical: a(n) = a(n-1) -4*a(n-2) +21*a(n-3) +149*a(n-4) +124*a(n-5) +680*a(n-6) -2720*a(n-8) -1984*a(n-9) -9536*a(n-10) -5376*a(n-11) +4096*a(n-12) -4096*a(n-13) +16384*a(n-14)

A207603 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 396, 1089, 6765, 42025, 157440, 589824, 3005184, 15311569, 64177113, 268992801, 1274751324, 6041020176, 26465410620, 115943655025, 534003435845, 2459467656361, 10969953831936, 48929241563136, 222765694221312
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 6 of A207599

Examples

			Some solutions for n=4
..1..0..0..1....0..1..1..0....0..1..1..1....1..0..1..1....1..1..0..1
..0..0..1..1....1..1..1..0....0..1..1..0....1..1..0..1....1..1..0..0
..0..0..1..1....0..1..1..0....0..1..1..0....1..1..0..1....1..1..0..0
..0..0..1..1....0..1..1..0....0..1..1..0....1..0..0..1....1..1..0..0
..0..0..1..1....0..1..1..0....0..1..1..0....1..0..0..1....1..1..0..0
..0..0..1..1....0..1..1..0....0..1..1..0....1..0..0..1....1..1..0..0
		

Formula

Empirical: a(n) = a(n-1) -5*a(n-2) +26*a(n-3) +226*a(n-4) +190*a(n-5) +1260*a(n-6) -6300*a(n-8) -4750*a(n-9) -28250*a(n-10) -16250*a(n-11) +15625*a(n-12) -15625*a(n-13) +78125*a(n-14)

A207604 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

14, 196, 546, 1521, 10725, 75625, 292600, 1132096, 6404216, 36228361, 159389139, 701243361, 3636529806, 18858430276, 87651752650, 407394975625, 2035887257525, 10174001088241, 48443243140656, 230661249751296, 1134162648191664
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 7 of A207599

Examples

			Some solutions for n=4
..1..0..1..1....0..0..1..1....0..1..1..0....0..1..1..1....1..1..0..1
..1..1..0..0....0..0..1..1....0..1..1..1....0..1..1..0....0..0..1..1
..1..1..0..0....0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1
..1..1..0..0....0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1
..1..1..0..0....0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1
..1..1..0..0....0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1
..1..1..0..0....0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1
		

Formula

Empirical: a(n) = a(n-1) -6*a(n-2) +31*a(n-3) +319*a(n-4) +270*a(n-5) +2100*a(n-6) -12600*a(n-8) -9720*a(n-9) -68904*a(n-10) -40176*a(n-11) +46656*a(n-12) -46656*a(n-13) +279936*a(n-14)
Showing 1-9 of 9 results.