A207608 Triangle of coefficients of polynomials u(n,x) jointly generated with A207609; see the Formula section.
1, 2, 3, 3, 4, 11, 3, 5, 26, 20, 3, 6, 50, 74, 29, 3, 7, 85, 204, 149, 38, 3, 8, 133, 469, 547, 251, 47, 3, 9, 196, 952, 1618, 1160, 380, 56, 3, 10, 276, 1764, 4110, 4234, 2124, 536, 65, 3, 11, 375, 3048, 9318, 13036, 9262, 3520, 719, 74, 3, 12, 495, 4983
Offset: 1
Examples
First five rows: 1; 2; 3, 3; 4, 11, 3; 5, 26, 20, 3; Triangle (2, -1/2, 1/2, 0, 0, 0, 0, ...) DELTA (0, 3/2, -1/2, 0, 0, 0, 0, ...) begins: 1; 2, 0; 3, 3, 0; 4, 11, 3, 0; 5, 26, 20, 3, 0; 6, 50, 74, 29, 3, 0; 7, 85, 204, 149, 38, 3, 0; ... - _Philippe Deléham_, Mar 03 2012
Crossrefs
Cf. A207609.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207608 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207609 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else 2*x*u(n - 1, x) + (x + 1)*v(n - 1, x) def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
Formula
u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 03 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-1,k) + T(n-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-y*x)/(1 - (2+y)*x - (y-1)*x^2).
Comments