cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207608 Triangle of coefficients of polynomials u(n,x) jointly generated with A207609; see the Formula section.

Original entry on oeis.org

1, 2, 3, 3, 4, 11, 3, 5, 26, 20, 3, 6, 50, 74, 29, 3, 7, 85, 204, 149, 38, 3, 8, 133, 469, 547, 251, 47, 3, 9, 196, 952, 1618, 1160, 380, 56, 3, 10, 276, 1764, 4110, 4234, 2124, 536, 65, 3, 11, 375, 3048, 9318, 13036, 9262, 3520, 719, 74, 3, 12, 495, 4983
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
  1;
  2;
  3,  3;
  4, 11,  3;
  5, 26, 20,  3;
Triangle (2, -1/2, 1/2, 0, 0, 0, 0, ...) DELTA (0, 3/2, -1/2, 0, 0, 0, 0, ...) begins:
  1;
  2,   0;
  3,   3,   0;
  4,  11,   3,   0;
  5,  26,  20,   3,   0;
  6,  50,  74,  29,   3,   0;
  7,  85, 204, 149,  38,   3,   0;
  ... - _Philippe Deléham_, Mar 03 2012
		

Crossrefs

Cf. A207609.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207608 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207609 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else 2*x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017

Formula

u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 03 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-1,k) + T(n-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-y*x)/(1 - (2+y)*x - (y-1)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A025192(n), A001077(n), A180038(n) for x = 0, 1, 2, 3 respectively. (End)