This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207610 #14 Apr 13 2020 09:32:48 %S A207610 1,2,4,1,7,3,1,12,7,3,1,20,15,8,3,1,33,30,19,9,3,1,54,58,42,23,10,3,1, %T A207610 88,109,89,55,27,11,3,1,143,201,182,125,69,31,12,3,1,232,365,363,273, %U A207610 166,84,35,13,3,1,376,655,709,579,383,212,100,39,14,3,1,609 %N A207610 Triangle of coefficients of polynomials u(n,x) jointly generated with A207611; see the Formula section. %F A207610 u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=u(n-1,x)+x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. %e A207610 First five rows: %e A207610 1 %e A207610 2 %e A207610 4...1 %e A207610 7...3...1 %e A207610 12...7...3...1 %t A207610 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A207610 u[n_, x_] := u[n - 1, x] + v[n - 1, x] %t A207610 v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1 %t A207610 Table[Factor[u[n, x]], {n, 1, z}] %t A207610 Table[Factor[v[n, x]], {n, 1, z}] %t A207610 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A207610 TableForm[cu] %t A207610 Flatten[%] (* A207610 *) %t A207610 Table[Expand[v[n, x]], {n, 1, z}] %t A207610 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A207610 TableForm[cv] %t A207610 Flatten[%] (* A207611 *) %o A207610 (Python) %o A207610 from sympy import Poly %o A207610 from sympy.abc import x %o A207610 def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) %o A207610 def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1 %o A207610 def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] %o A207610 for n in range(1, 13): print(a(n)) # _Indranil Ghosh_, May 28 2017 %Y A207610 Cf. A207611. %Y A207610 Cf. A000071 (column 1), A023610 (column 2). %K A207610 nonn,tabf %O A207610 1,2 %A A207610 _Clark Kimberling_, Feb 19 2012