A207612 Triangle of coefficients of polynomials u(n,x) jointly generated with A207613; see the Formula section.
1, 2, 4, 2, 7, 6, 4, 12, 14, 12, 8, 20, 30, 32, 24, 16, 33, 60, 76, 72, 48, 32, 54, 116, 168, 184, 160, 96, 64, 88, 218, 356, 440, 432, 352, 192, 128, 143, 402, 728, 1000, 1104, 992, 768, 384, 256, 232, 730, 1452, 2184, 2656, 2688, 2240, 1664, 768, 512
Offset: 1
Examples
First five rows: 1 2 4....2 7....6....4 12...14...12...8
Crossrefs
Cf. A207613.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207612 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207613 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x) + 1 def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
Formula
u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments