cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207612 Triangle of coefficients of polynomials u(n,x) jointly generated with A207613; see the Formula section.

Original entry on oeis.org

1, 2, 4, 2, 7, 6, 4, 12, 14, 12, 8, 20, 30, 32, 24, 16, 33, 60, 76, 72, 48, 32, 54, 116, 168, 184, 160, 96, 64, 88, 218, 356, 440, 432, 352, 192, 128, 143, 402, 728, 1000, 1104, 992, 768, 384, 256, 232, 730, 1452, 2184, 2656, 2688, 2240, 1664, 768, 512
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Column 1: A000071
Column 2: 2*A023610

Examples

			First five rows:
1
2
4....2
7....6....4
12...14...12...8
		

Crossrefs

Cf. A207613.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207612 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A207613 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017

Formula

u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.