This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207623 #9 Mar 31 2023 03:22:59 %S A207623 1,2,2,3,6,4,14,4,5,28,20,6,50,64,8,7,82,164,56,8,126,364,232,16,9, %T A207623 184,728,736,144,10,258,1344,1968,736,32,11,350,2328,4656,2800,352,12, %U A207623 462,3828,10032,8800,2144,64,13,596,6028,20064,24112,9536,832,14 %N A207623 Triangle of coefficients of polynomials v(n,x) jointly generated with A207622; see the Formula section. %C A207623 Column n is divisible by 2^(n-1); row n ends with 2^(n-1). %C A207623 Column 2: 2*A004006. %F A207623 u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=2x*u(n-1,x)+v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. %e A207623 First five rows: %e A207623 1 %e A207623 2...2 %e A207623 3...6 %e A207623 4...14...4 %e A207623 5...28...20 %t A207623 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A207623 u[n_, x_] := u[n - 1, x] + v[n - 1, x] %t A207623 v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1 %t A207623 Table[Factor[u[n, x]], {n, 1, z}] %t A207623 Table[Factor[v[n, x]], {n, 1, z}] %t A207623 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A207623 TableForm[cu] %t A207623 Flatten[%] (* A207622 *) %t A207623 Table[Expand[v[n, x]], {n, 1, z}] %t A207623 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A207623 TableForm[cv] %t A207623 Flatten[%] (* A207623 *) %Y A207623 Cf. A207622. %K A207623 nonn,tabl %O A207623 1,2 %A A207623 _Clark Kimberling_, Feb 20 2012