cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207625 Triangle of coefficients of polynomials u(n,x) jointly generated with A207626; see the Formula section.

Original entry on oeis.org

1, 2, 4, 3, 7, 12, 3, 11, 32, 21, 3, 16, 70, 83, 30, 3, 22, 135, 247, 161, 39, 3, 29, 238, 616, 622, 266, 48, 3, 37, 392, 1358, 1946, 1276, 398, 57, 3, 46, 612, 2730, 5244, 4854, 2290, 557, 66, 3, 56, 915, 5106, 12630, 15622, 10312, 3745, 743, 75, 3, 67
Offset: 1

Views

Author

Clark Kimberling, Feb 21 2012

Keywords

Examples

			First five rows:
1
2
4....3
7....12...3
11...32...21...3
		

Crossrefs

Cf. A207626.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207625 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A207626 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.