This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207629 #14 Dec 25 2022 13:59:18 %S A207629 1,2,5,1,11,4,23,13,1,47,37,6,95,97,25,1,191,241,87,8,383,577,271,41, %T A207629 1,767,1345,783,169,10,1535,3073,2143,609,61,1,3071,6913,5631,2001, %U A207629 291,12,6143,15361,14335,6145,1191,85,1,12287,33793,35583,17921 %N A207629 Triangle of coefficients of polynomials u(n,x) jointly generated with A207630; see the Formula section. %C A207629 With offset 0, equals the stretched Riordan array ((1 - z + z^2)/(1 - 3*z + 2*z^2), z^2/(1 - 2*z)) in the notation of Corsani et al., Section 2. - _Peter Bala_, Dec 31 2015 %H A207629 C. Corsani, D. Merlini, and R. Sprugnoli, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00110-6">Left-inversion of combinatorial sums</a>, Discrete Mathematics, 180 (1998) 107-122. %F A207629 u(n,x) = u(n-1,x) + v(n-1,x), %F A207629 v(n,x) = (x + 1)*u(n-1,x) + v(n-1,x) + 1, %F A207629 where u(1,x) = 1, v(1,x) = 1. %e A207629 First five rows: %e A207629 1 %e A207629 2 %e A207629 5 1 %e A207629 11 4 %e A207629 23 13 1 %t A207629 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A207629 u[n_, x_] := u[n - 1, x] + v[n - 1, x] %t A207629 v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1 %t A207629 Table[Factor[u[n, x]], {n, 1, z}] %t A207629 Table[Factor[v[n, x]], {n, 1, z}] %t A207629 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A207629 TableForm[cu] %t A207629 Flatten[%] (* A207629 *) %t A207629 Table[Expand[v[n, x]], {n, 1, z}] %t A207629 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A207629 TableForm[cv] %t A207629 Flatten[%] (* A207630 *) %Y A207629 Cf. A207630, A208510, A083329 (column 1). %K A207629 nonn,tabf,easy %O A207629 1,2 %A A207629 _Clark Kimberling_, Feb 23 2012