A207632 Triangle of coefficients of polynomials v(n,x) jointly generated with A207631; see Formula section.
1, 2, 2, 3, 4, 2, 5, 9, 6, 2, 8, 18, 17, 8, 2, 13, 35, 41, 27, 10, 2, 21, 66, 93, 76, 39, 12, 2, 34, 122, 200, 196, 125, 53, 14, 2, 55, 222, 415, 472, 360, 190, 69, 16, 2, 89, 399, 837, 1083, 957, 603, 273, 87, 18, 2, 144, 710, 1651, 2392, 2400, 1750, 945, 376
Offset: 1
Examples
First five rows: 1 2...2 3...4....2 5...9....6....2 8...18...17...8...2
Crossrefs
Cf. A207631.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207631 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207632 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments