This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207634 #5 Mar 30 2012 18:58:13 %S A207634 1,2,3,3,6,6,5,13,15,12,8,26,41,36,24,13,50,95,115,84,48,21,94,210, %T A207634 300,302,192,96,34,173,443,740,871,760,432,192,55,314,905,1716,2353, %U A207634 2392,1856,960,384,89,563,1803,3823,5916,6987,6312,4432,2112,768 %N A207634 Triangle of coefficients of polynomials v(n,x) jointly generated with A207633; see Formula section. %C A207634 Column 1: Fibonacci numbers, A000045. %F A207634 u(n,x)=u(n-1,x)+v(n-1,x), %F A207634 v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1, %F A207634 where u(1,x)=1, v(1,x)=1. %e A207634 First five rows: %e A207634 1 %e A207634 2...3 %e A207634 3...6....6 %e A207634 5...13...15...12 %e A207634 8...26...41...36...24 %t A207634 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A207634 u[n_, x_] := u[n - 1, x] + v[n - 1, x] %t A207634 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1 %t A207634 Table[Factor[u[n, x]], {n, 1, z}] %t A207634 Table[Factor[v[n, x]], {n, 1, z}] %t A207634 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A207634 TableForm[cu] %t A207634 Flatten[%] (* A207633 *) %t A207634 Table[Expand[v[n, x]], {n, 1, z}] %t A207634 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A207634 TableForm[cv] %t A207634 Flatten[%] (* A207634 *) %Y A207634 Cf. A207633. %K A207634 nonn,tabl %O A207634 1,2 %A A207634 _Clark Kimberling_, Feb 24 2012