This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207645 #15 Jun 12 2012 12:08:29 %S A207645 1,1,1,1,1,2,1,3,3,1,4,4,1,5,10,10,1,6,12,12,1,7,21,21,21,1,8,24,48, %T A207645 48,1,9,36,72,72,72,1,10,40,80,80,80,1,11,55,165,330,330,330,1,12,60, %U A207645 180,360,360,360,1,13,78,234,468,468,468,468,1,14,84,336,672,1344,1344,1344 %N A207645 Triangle where T(n,k) = Product_{j=1..k} floor(n/j - 1), as read by rows n>=0, columns k=0..[n/2]. %C A207645 Compare the definition to that of Pascal's triangle: %C A207645 binomial(n,k) = Product_{j=1..k} ((n+1)/j - 1). %H A207645 Paul D. Hanna, <a href="/A207645/b207645.txt">Rows n = 0..70, flattened</a> %F A207645 Row sums equal A207643. %F A207645 Antidiagonal sums form A207644. %F A207645 Right border of even-indexed rows equals A207646. %F A207645 Right border of odd-indexed rows equals A207647. %e A207645 Triangle begins with row n=0 as: %e A207645 1; %e A207645 1; %e A207645 1, 1; %e A207645 1, 2; %e A207645 1, 3, 3; %e A207645 1, 4, 4; %e A207645 1, 5, 10, 10; %e A207645 1, 6, 12, 12; %e A207645 1, 7, 21, 21, 21; %e A207645 1, 8, 24, 48, 48; %e A207645 1, 9, 36, 72, 72, 72; %e A207645 1, 10, 40, 80, 80, 80; %e A207645 1, 11, 55, 165, 330, 330, 330; %e A207645 1, 12, 60, 180, 360, 360, 360; %e A207645 1, 13, 78, 234, 468, 468, 468, 468; %e A207645 1, 14, 84, 336, 672, 1344, 1344, 1344; %e A207645 1, 15, 105, 420, 1260, 2520, 2520, 2520, 2520; %e A207645 1, 16, 112, 448, 1344, 2688, 2688, 2688, 2688; ... %t A207645 t[n_, k_] := Product[Floor[n/j - 1], {j, 1, k}]; Flatten[Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}]] (* _Jean-François Alcover_, Jun 12 2012 *) %o A207645 (PARI) {T(n,k)=if(k==0,1,prod(j=1,k,floor(n/j-1)))} %o A207645 for(n=0,12,for(k=0,n\2,print1(T(n,k),", "));print("")) %Y A207645 Cf. A207643, A207644, A207646, A207647. %K A207645 nonn,nice,tabf %O A207645 0,6 %A A207645 _Paul D. Hanna_, Feb 20 2012