This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207669 #15 Aug 19 2021 10:56:25 %S A207669 3,4,5,6,7,8,10,14,17,20,22,25,34,35,38,41,43,46,49,53,58,59,65,67,71, %T A207669 73,77,79,86,89,92,94,97,101,110,115,118,121,125,134,137,139,145,149, %U A207669 151,158,166,169,172,181,185,188,190,197,205,209,212,214,217 %N A207669 Numbers that match polynomials irreducible (mod 3), with coefficients in {0,1,2}. %C A207669 For such polynomials irreducible over the field of rational numbers, see A207966, which also describes the enumeration of all the nonzero polynomials whose coefficients are all in {0,1,2}. %e A207669 Polynomials having coefficients in {0,1,2} are %e A207669 enumerated by the positive integers as follows: %e A207669 n ... p[n,x] .. irreducible (mod 3) %e A207669 1 ... 1 ....... no %e A207669 2 ... 2 ....... no %e A207669 3 ... x ....... yes %e A207669 4 ... x+1 ..... yes %e A207669 5 ... x+2 ..... yes %e A207669 6 ... 2x ...... yes %e A207669 7 ... 2x+1 .... yes %e A207669 8 ... 2x+2 .... yes %e A207669 9 ... x^2 ..... no %e A207669 10 .. x^2+1 ... yes %e A207669 11 .. x^2+2 ... no %e A207669 The least n for which p(n,x) is irreducible over the %e A207669 rationals but not modulo 3 is 13; the factorization of %e A207669 p(13,x) is (x+1)(x+2) (mod 3). %t A207669 t = Table[IntegerDigits[n, 3], {n, 1, 1000}]; %t A207669 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207669 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207669 Table[p[n, x], {n, 1, 15}] %t A207669 u = {}; Do[n++; %t A207669 If[IrreduciblePolynomialQ[p[n, x], Modulus -> 3], %t A207669 AppendTo[u, n]], {n, 1, 400}] %t A207669 u (* A207669 *) %t A207669 Complement[Range[200], %] (* A207670 *) %t A207669 b[n_] := FromDigits[IntegerDigits[u, 3][[n]]] %t A207669 Table[b[n], {n, 1, 50}] (* A207671 *) %Y A207669 Cf. A207670 (complement), A207671 (ternary). %K A207669 nonn %O A207669 1,1 %A A207669 _Clark Kimberling_, Feb 26 2012