This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207671 #9 Aug 19 2021 10:56:46 %S A207671 10,11,12,20,21,22,101,112,122,202,211,221,1021,1022,1102,1112,1121, %T A207671 1201,1211,1222,2011,2012,2102,2111,2122,2201,2212,2221,10012,10022, %U A207671 10102,10111,10121,10202,11002,11021,11101,11111,11122,11222 %N A207671 Numbers in ternary representation that match nonzero polynomials with all coefficients in {0,1,2} that are irreducible modulo 3. %C A207671 For a discussion and examples in base-10 representation, see A207670. For the analogous sequence in base 2, see A206073. %e A207671 (See the Example section of A207669.) %t A207671 t = Table[IntegerDigits[n, 3], {n, 1, 1000}]; %t A207671 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207671 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207671 Table[p[n, x], {n, 1, 15}] %t A207671 u = {}; Do[n++; %t A207671 If[IrreduciblePolynomialQ[p[n, x], Modulus -> 3], %t A207671 AppendTo[u, n]], {n, 1, 400}] %t A207671 u (* A207669 *) %t A207671 Complement[Range[200], %] (* A207670 *) %t A207671 b[n_] := FromDigits[IntegerDigits[u, 3][[n]]] %t A207671 Table[b[n], {n, 1, 50}] (* A207671 *) %Y A207671 Cf. A207669, A206073. %K A207671 nonn,base %O A207671 1,1 %A A207671 _Clark Kimberling_, Feb 26 2012