cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207681 Number of n X 7 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

This page as a plain text file.
%I A207681 #7 Apr 10 2022 14:15:14
%S A207681 28,784,1488,4846,14090,29982,65564,139730,299064,620638,1251316,
%T A207681 2595908,5260942,10606968,21437670,42824016,86024822,171420110,
%U A207681 340644210,678395210,1341990252,2658199478,5253155166,10354111212,20425614060
%N A207681 Number of n X 7 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.
%C A207681 Column 7 of A207682.
%H A207681 R. H. Hardin, <a href="/A207681/b207681.txt">Table of n, a(n) for n = 1..210</a>
%F A207681 Empirical: a(n) = a(n-1) +4*a(n-2) +12*a(n-3) -22*a(n-4) -40*a(n-5) -69*a(n-6) +158*a(n-7) +209*a(n-8) +288*a(n-9) -681*a(n-10) -783*a(n-11) -870*a(n-12) +2056*a(n-13) +2292*a(n-14) +1834*a(n-15) -4575*a(n-16) -5470*a(n-17) -2549*a(n-18) +7882*a(n-19) +10555*a(n-20) +1934*a(n-21) -11218*a(n-22) -15926*a(n-23) +220*a(n-24) +14043*a(n-25) +18249*a(n-26) -2662*a(n-27) -15584*a(n-28) -15641*a(n-29) +4007*a(n-30) +14677*a(n-31) +9830*a(n-32) -3939*a(n-33) -11106*a(n-34) -4248*a(n-35) +2891*a(n-36) +6465*a(n-37) +985*a(n-38) -1563*a(n-39) -2801*a(n-40) +99*a(n-41) +589*a(n-42) +877*a(n-43) -170*a(n-44) -144*a(n-45) -191*a(n-46) +63*a(n-47) +20*a(n-48) +27*a(n-49) -12*a(n-50) -a(n-51) -2*a(n-52) +a(n-53) for n>60.
%e A207681 Some solutions for n=4
%e A207681 ..1..0..0..1..1..1..1....0..0..1..1..1..1..1....0..1..0..0..1..1..0
%e A207681 ..0..1..1..1..1..0..0....0..1..1..0..0..1..0....0..0..1..1..1..0..0
%e A207681 ..0..0..1..0..0..1..1....0..1..0..0..1..0..0....0..1..1..0..0..1..0
%e A207681 ..0..1..0..0..1..0..0....0..0..1..0..0..1..0....0..1..0..0..1..0..0
%Y A207681 Cf. A207682.
%K A207681 nonn
%O A207681 1,1
%A A207681 _R. H. Hardin_, Feb 19 2012