cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207694 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 60, 100, 240, 576, 1296, 2916, 6804, 15876, 36288, 82944, 191808, 443556, 1018980, 2340900, 5397840, 12446784, 28640304, 65901924, 151822836, 349764804, 805233312, 1853819136, 4269519072, 9833102244, 22641659460, 52134588900
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 3 of A207693.

Examples

			Some solutions for n=4:
..1..0..0..1....1..0..0..1....0..0..1..1....0..0..1..1....0..1..1..0
..0..1..1..0....1..1..1..0....1..1..1..0....1..1..0..0....1..0..0..1
..1..0..0..1....0..0..1..1....1..1..0..1....0..0..1..1....0..0..1..1
		

Crossrefs

Cf. A207693.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-3) + 9*a(n-4) for n>7.
Empirical g.f.: 2*x*(3 + 15*x + 12*x^2 + 11*x^3 - 11*x^4 - 84*x^5 - 60*x^6) / ((1 + 3*x^2)*(1 - x - 3*x^2)). - Colin Barker, Mar 05 2018

A207688 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 60, 256, 1872, 15376, 145200, 1887876, 32939236, 653211364, 16761239040, 557862597604, 24505820603880, 1374667445474064, 89177394083197716, 7769360160391840000, 912190244879661701508, 129010731422391263108196
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207693.

Examples

			Some solutions for n=4
..1..1..0..1....1..1..1..0....1..1..1..1....1..1..0..1....1..0..0..1
..1..1..1..0....1..0..0..1....0..0..1..1....0..0..1..1....0..1..1..0
..0..0..1..1....0..1..1..0....1..1..0..0....1..1..0..0....1..0..0..1
..1..1..0..0....1..0..1..1....1..1..0..0....0..1..1..0....0..1..1..0
		

Crossrefs

Cf. A207693.

A207689 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 100, 256, 576, 1156, 2500, 5476, 11664, 24964, 53824, 115600, 248004, 532900, 1144900, 2458624, 5280804, 11343424, 24364096, 52330756, 112402404, 241429444, 518563984, 1113823876, 2392383744, 5138595856, 11037183364, 23706760900
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 4 of A207693.

Examples

			Some solutions for n=4:
..1..0..0..1....1..1..1..1....1..1..1..0....1..1..0..1....0..0..1..1
..1..1..1..1....0..0..1..1....1..0..0..1....0..0..1..1....1..1..1..0
..0..1..1..0....1..1..0..0....0..1..1..0....1..1..0..0....1..1..0..1
..1..0..0..1....1..0..0..1....0..1..1..1....0..1..1..0....0..0..1..1
		

Crossrefs

Cf. A207693.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4) - a(n-5) - a(n-6) for n>8.
Empirical g.f.: x*(9 + 72*x + 10*x^2 + 48*x^3 - 32*x^4 - 48*x^5 - 10*x^6 + 17*x^7) / ((1 + x^2 - x^3)*(1 - x - 2*x^2 - x^3)). - Colin Barker, Jun 25 2018

A207690 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

15, 225, 240, 768, 1872, 4216, 10000, 24420, 59616, 138724, 336400, 811240, 1923276, 4654480, 11091620, 26621504, 64022280, 152678176, 367544432, 879654400, 2106871848, 5061876412, 12106779344, 29061344972, 69658807392, 166845800312
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 5 of A207693

Examples

			Some solutions for n=4
..0..1..1..0..1....1..1..0..1..1....0..1..1..1..0....1..1..0..0..1
..1..1..0..1..1....0..1..1..0..0....1..1..0..0..1....1..0..1..1..0
..0..0..1..1..0....1..0..0..1..1....1..0..1..1..1....0..1..1..1..1
..1..1..1..0..1....0..1..1..0..1....0..1..1..1..0....1..1..0..0..1
		

Formula

Empirical: a(n) = a(n-2) +12*a(n-3) +2*a(n-4) +12*a(n-5) -56*a(n-6) +12*a(n-7) -42*a(n-8) +143*a(n-9) -13*a(n-10) +33*a(n-11) -192*a(n-12) -6*a(n-13) +43*a(n-14) +175*a(n-15) +11*a(n-16) -57*a(n-17) -102*a(n-18) +5*a(n-19) +10*a(n-20) +39*a(n-21) +2*a(n-23) -9*a(n-24) +a(n-27) for n>29

A207691 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

25, 625, 576, 2304, 6084, 15376, 40000, 108900, 304704, 770884, 2102500, 5692996, 14915044, 40653376, 107453956, 288252484, 776179600, 2054990224, 5544589444, 14786560000, 39491228176, 106128699076, 282653849104, 758254325284
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 6 of A207693

Examples

			Some solutions for n=4
..1..0..1..1..1..1....1..0..1..1..0..1....1..1..1..1..1..1....1..0..1..1..1..0
..0..1..1..1..0..0....0..1..1..0..1..1....0..1..1..0..0..1....0..1..1..0..0..1
..1..1..0..0..1..1....1..1..0..1..1..0....1..0..0..1..1..0....1..0..0..1..1..0
..1..0..0..1..1..0....1..0..1..1..0..0....0..0..1..1..1..1....1..0..1..1..1..1
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +14*a(n-3) -6*a(n-4) +33*a(n-5) -128*a(n-6) +8*a(n-7) -228*a(n-8) +384*a(n-9) +83*a(n-10) +439*a(n-11) -949*a(n-12) -958*a(n-13) +282*a(n-14) +3103*a(n-15) +1779*a(n-16) -3073*a(n-17) -7347*a(n-18) -2028*a(n-19) +5069*a(n-20) +9884*a(n-21) +3661*a(n-22) -4410*a(n-23) -8135*a(n-24) -4196*a(n-25) +2169*a(n-26) +4570*a(n-27) +1924*a(n-28) +429*a(n-29) -2446*a(n-30) -440*a(n-31) -701*a(n-32) +1325*a(n-33) +181*a(n-34) +282*a(n-35) -491*a(n-36) -4*a(n-37) -34*a(n-38) +103*a(n-39) -6*a(n-40) -2*a(n-41) -15*a(n-42) +a(n-43) +a(n-45) for n>47

A207692 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

40, 1600, 1296, 5856, 18564, 50096, 145200, 453420, 1403184, 4038800, 12177100, 36992544, 110036104, 332138592, 989787144, 2977771420, 8964400760, 26737629576, 80548970652, 241336844800, 723444785800, 2175007306820
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 7 of A207693

Examples

			Some solutions for n=4
..1..1..1..1..1..0..0....0..0..1..1..1..0..1....1..0..1..1..0..1..1
..1..1..0..0..1..1..1....1..1..0..0..1..1..0....1..1..0..1..1..0..0
..0..0..1..1..0..0..1....0..0..1..1..0..1..1....0..1..1..0..0..1..1
..0..1..1..0..1..1..0....0..1..1..1..0..0..1....1..0..0..1..1..0..0
		

A207695 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 144, 256, 768, 2304, 5856, 14884, 42700, 122500, 320600, 839056, 2361448, 6646084, 17633520, 46785600, 130315680, 362978704, 970889920, 2596921600, 7186175360, 19885512256, 53475523456, 143804774656, 396160887744
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 4 of A207693

Examples

			Some solutions for n=4
..1..0..0..1....0..1..1..0....0..1..1..0....1..0..1..1....1..1..1..0
..0..1..1..0....1..0..0..1....1..0..1..1....1..1..0..0....1..0..0..1
..1..0..0..1....1..1..1..0....1..1..0..0....0..1..1..1....0..1..1..0
..0..1..1..0....0..0..1..1....0..0..1..1....0..0..1..1....1..0..1..1
		

Formula

Empirical: a(n) = 2*a(n-3) +64*a(n-4) +16*a(n-5) +4*a(n-6) -20*a(n-7) -1112*a(n-8) -324*a(n-9) +40*a(n-10) -136*a(n-11) +7516*a(n-12) +2032*a(n-13) -192*a(n-14) +1936*a(n-15) -23584*a(n-16) -4720*a(n-17) -5888*a(n-19) +37360*a(n-20) +3968*a(n-21) +480*a(n-22) +6464*a(n-23) -29872*a(n-24) -704*a(n-25) -256*a(n-26) -2592*a(n-27) +11072*a(n-28) -256*a(n-29) -64*a(n-30) +320*a(n-31) -1600*a(n-32) +64*a(n-33) +64*a(n-36) for n>39

A207696 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 312, 576, 1872, 6084, 18564, 56644, 177548, 556516, 1724752, 5345344, 16678768, 52041796, 161651312, 502118464, 1565288432, 4879581316, 15166141648, 47137620544, 146886255152, 457714490116, 1423079330608, 4424493488704
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 5 of A207693

Examples

			Some solutions for n=4
..0..1..1..1....1..0..1..1....0..1..1..1....0..1..1..0....1..0..1..1
..1..0..0..1....0..1..1..0....1..1..1..0....1..1..0..1....1..1..0..1
..0..1..1..0....1..0..0..1....1..0..0..1....0..0..1..1....0..1..1..0
..1..1..0..1....0..1..1..1....0..1..1..1....1..1..1..0....1..0..1..1
..0..0..1..1....1..1..1..0....0..1..1..0....1..1..0..0....1..0..0..1
		

Formula

Empirical: a(n) = -a(n-1) +2*a(n-3) +134*a(n-4) +156*a(n-5) +26*a(n-6) -38*a(n-7) -5479*a(n-8) -6619*a(n-9) -764*a(n-10) -794*a(n-11) +99186*a(n-12) +120572*a(n-13) +8542*a(n-14) +28158*a(n-15) -922172*a(n-16) -1110136*a(n-17) -36020*a(n-18) -285680*a(n-19) +4730084*a(n-20) +5573996*a(n-21) +15808*a(n-22) +1360424*a(n-23) -13979784*a(n-24) -15981040*a(n-25) +306584*a(n-26) -3427112*a(n-27) +24196144*a(n-28) +26634240*a(n-29) -1022416*a(n-30) +4643776*a(n-31) -24267712*a(n-32) -25569504*a(n-33) +1538368*a(n-34) -3216512*a(n-35) +13574976*a(n-36) +13579136*a(n-37) -1140864*a(n-38) +996608*a(n-39) -3950848*a(n-40) -3684352*a(n-41) +352768*a(n-42) -113664*a(n-43) +532480*a(n-44) +442368*a(n-45) -36864*a(n-46) -24576*a(n-48) -16384*a(n-49) for n>52

A207697 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

18, 324, 612, 1156, 4216, 15376, 50096, 163216, 578528, 2050624, 6804864, 22581504, 79225344, 277955584, 930264256, 3113416804, 10855054516, 37846589764, 127345247780, 428488068100, 1487399982580, 5163174596644, 17438992794736
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 6 of A207693

Examples

			Some solutions for n=4
..1..1..1..0....0..1..1..1....0..0..1..1....0..1..1..0....1..1..1..1
..0..1..1..1....1..1..1..0....1..1..0..1....1..0..1..1....0..1..1..0
..1..0..0..1....1..0..0..1....0..1..1..0....1..1..0..0....1..0..0..1
..0..1..1..0....0..1..1..1....1..0..1..1....0..1..1..1....1..1..1..1
..1..1..0..1....1..1..0..0....1..1..0..1....1..0..1..1....0..1..1..0
..0..0..1..1....1..0..0..1....0..1..1..0....1..1..0..0....1..0..0..1
		

Formula

Empirical: a(n) = -a(n-1) +2*a(n-3) +274*a(n-4) +306*a(n-5) +36*a(n-6) -130*a(n-7) -28677*a(n-8) -33225*a(n-9) -3770*a(n-10) -4770*a(n-11) +1565576*a(n-12) +1823620*a(n-13) +168342*a(n-14) +698638*a(n-15) -50801253*a(n-16) -58453661*a(n-17) -3817086*a(n-18) -27437652*a(n-19) +1050877536*a(n-20) +1181661460*a(n-21) +40554426*a(n-22) +556485344*a(n-23) -14446173949*a(n-24) -15778482257*a(n-25) -11058516*a(n-26) -6679705744*a(n-27) +135464117182*a(n-28) +143388289958*a(n-29) -4806361744*a(n-30) +50210461952*a(n-31) -881437731704*a(n-32) -904491087128*a(n-33) +59320040832*a(n-34) -242626909504*a(n-35) +4024397865584*a(n-36) +4010127347184*a(n-37) -368855933280*a(n-38) +759626110464*a(n-39) -12977404706256*a(n-40) -12582990069520*a(n-41) +1376126461120*a(n-42) -1526930294016*a(n-43) +29626195741536*a(n-44) +28008873464288*a(n-45) -3240052086272*a(n-46) +1901134082560*a(n-47) -47778586018560*a(n-48) -44130895476480*a(n-49) +4885720777728*a(n-50) -1315665135616*a(n-51) +54019531689472*a(n-52) +48853241124352*a(n-53) -4694023176192*a(n-54) +280203395072*a(n-55) -42192077418496*a(n-56) -37459909849088*a(n-57) +2805212594176*a(n-58) +268391219200*a(n-59) +22216208130048*a(n-60) +19431512023040*a(n-61) -990095212544*a(n-62) -238917648384*a(n-63) -7587017195520*a(n-64) -6567373766656*a(n-65) +183441817600*a(n-66) +84232634368*a(n-67) +1579468062720*a(n-68) +1361514725376*a(n-69) -11259609088*a(n-70) -14780727296*a(n-71) -180111802368*a(n-72) -156195880960*a(n-73) -1056964608*a(n-74) +1107296256*a(n-75) +9135194112*a(n-76) +8162115584*a(n-77) +134217728*a(n-78) -134217728*a(n-80) -134217728*a(n-81) for n>84

A207698 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

25, 625, 1250, 2500, 10000, 40000, 145200, 527076, 2056032, 8020224, 29854944, 111133764, 429565416, 1660399504, 6232977072, 23397985296, 90031551120, 346426416400, 1306080208880, 4924120769296, 18891767424072, 72479716304004
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 7 of A207693

Examples

			Some solutions for n=4
..0..0..1..1....1..1..1..0....0..0..1..1....0..0..1..1....0..1..1..0
..1..1..0..1....1..0..0..1....1..1..0..0....1..1..0..1....1..0..0..1
..1..1..1..0....0..1..1..1....0..0..1..1....1..1..1..0....0..1..1..0
..0..0..1..1....1..1..0..0....1..1..1..1....0..0..1..1....1..0..0..1
..1..1..0..0....1..0..1..1....1..1..0..0....1..1..0..1....1..1..1..0
..0..1..1..1....0..1..1..0....0..0..1..1....1..1..1..0....0..1..1..1
..1..0..1..1....1..1..0..1....1..0..1..1....0..0..1..1....1..0..0..1
		
Showing 1-10 of 10 results.