This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207702 #8 Jun 25 2018 10:59:06 %S A207702 40,1600,13230,61254,206910,571350,1369900,2956980,5883084,10965220, %T A207702 19372210,32726250,53222130,83765514,128131680,191146120,278888400, %U A207702 398920680,560542294,775071790,1056157830,1420120350,1886323380 %N A207702 Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically. %C A207702 Column 7 of A207703. %H A207702 R. H. Hardin, <a href="/A207702/b207702.txt">Table of n, a(n) for n = 1..210</a> %F A207702 Empirical: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). %F A207702 Conjectures from _Colin Barker_, Jun 25 2018: (Start) %F A207702 G.f.: 2*x*(20 + 640*x + 775*x^2 - 1013*x^3 + 259*x^4 + 31*x^5 - 12*x^6) / (1 - x)^8. %F A207702 a(n) = (n*(162 - 327*n - 881*n^2 + 1296*n^3 + 997*n^4 + 183*n^5 + 10*n^6)) / 36. %F A207702 (End) %e A207702 Some solutions for n=4: %e A207702 ..0..1..1..1..0..0..1....0..1..1..0..0..1..1....1..1..1..1..1..1..1 %e A207702 ..1..0..0..1..1..0..0....0..0..1..1..1..0..1....0..1..1..1..1..0..1 %e A207702 ..0..1..1..1..0..0..1....0..1..1..0..0..1..1....1..1..1..1..1..1..1 %e A207702 ..0..1..1..1..1..0..0....0..0..1..1..0..1..1....0..1..1..1..1..0..1 %Y A207702 Cf. A207703. %K A207702 nonn %O A207702 1,1 %A A207702 _R. H. Hardin_, Feb 19 2012