A207714 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.
16, 256, 1644, 12015, 97580, 820820, 7070805, 61530000, 538903800, 4735474525, 41696434728, 367562042568, 3242398676595, 28614207114896, 252584682127428, 2229968979966475, 19689354946616388, 173855783327986060
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..0..1..0....1..0..1..1..1....1..0..1..0..1....1..1..0..1..0 ..1..1..0..1..1....1..1..0..1..0....1..1..0..1..0....0..1..0..1..0 ..0..1..0..1..1....1..0..1..1..1....0..1..1..1..1....1..1..0..1..0 ..1..1..0..1..1....0..1..0..1..1....1..1..0..1..1....0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 16*a(n-1) -42*a(n-2) -401*a(n-3) +1780*a(n-4) +3228*a(n-5) -21310*a(n-6) -7724*a(n-7) +117040*a(n-8) -14574*a(n-9) -345676*a(n-10) +104844*a(n-11) +593560*a(n-12) -209036*a(n-13) -617332*a(n-14) +210704*a(n-15) +393548*a(n-16) -121244*a(n-17) -151602*a(n-18) +42220*a(n-19) +33904*a(n-20) -9106*a(n-21) -4084*a(n-22) +1140*a(n-23) +217*a(n-24) -68*a(n-25) -2*a(n-26) +a(n-27) for n>28
Comments