cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207712 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

6, 36, 114, 387, 1414, 5302, 20265, 78120, 302850, 1177545, 4587102, 17888094, 69803695, 272499292, 1064042682, 4155446955, 16229927982, 63392825886, 247616093433, 967223892240, 3778165401850, 14758373590129, 57649858583478
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 3 of A207717.

Examples

			Some solutions for n=4:
..1..1..1....1..1..0....0..1..1....1..0..0....1..1..1....0..1..0....1..0..0
..1..1..1....1..1..0....1..1..0....0..1..0....1..0..1....0..1..1....0..1..1
..1..1..1....1..0..0....0..1..1....1..0..0....1..1..1....0..1..1....1..1..0
..1..1..0....1..1..0....1..1..0....0..1..0....0..1..1....0..1..0....1..1..1
		

Crossrefs

Cf. A207717.

Formula

Empirical: a(n) = 6*a(n-1) - 4*a(n-2) - 23*a(n-3) + 20*a(n-4) + 28*a(n-5) - 13*a(n-6) - 14*a(n-7) + a(n-9) for n>10.
Empirical g.f.: x*(6 - 78*x^2 - 15*x^3 + 256*x^4 + 100*x^5 - 200*x^6 - 120*x^7 + 6*x^8 + 9*x^9) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2)*(1 - 2*x - 7*x^2 - 2*x^3 + x^4)). - Colin Barker, Mar 05 2018

A207718 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

6, 36, 114, 450, 1644, 6186, 23010, 85992, 320742, 1197318, 4467984, 16675494, 62232582, 232257108, 866792178, 3234917538, 12072868380, 45056571498, 168153392514, 627557039160, 2342074698438, 8740741860870, 32620892573088
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 3 of A207717.

Examples

			Some solutions for n=4:
..0..1..0..0....1..1..1..1....1..1..1..0....1..1..0..1....1..1..0..1
..0..1..1..0....1..1..1..1....0..1..1..0....0..1..0..0....0..1..1..0
..0..1..1..0....1..1..1..0....1..0..1..0....1..1..0..1....1..1..0..1
		

Crossrefs

Cf. A207717.

Formula

Empirical: a(n) = 2*a(n-1) + 7*a(n-2) - a(n-3) - 4*a(n-4) + a(n-5).
Empirical g.f.: 6*x*(1 + 4*x - 4*x^3 + x^4) / ((1 + x)*(1 - 4*x + x^2)*(1 + x - x^2)). - Colin Barker, Mar 05 2018

A207711 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 16, 114, 2205, 97580, 10150118, 2433018665, 1332236625328, 1658417176295910, 4680320299339768945, 29900757895299392674248, 432064042048194196301219286, 14114419978195735103237247653751, 1042092211595049585701702108677740928
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207717

Examples

			Some solutions for n=4
..1..0..1..0....1..0..1..0....1..0..1..0....0..1..1..0....0..1..0..1
..1..1..0..1....1..0..1..0....0..1..0..0....1..1..0..0....1..1..1..0
..0..1..1..1....1..0..1..0....1..1..1..0....1..1..1..0....0..1..0..1
..1..1..1..1....1..0..1..0....0..1..1..0....0..1..1..0....1..0..1..1
		

A207713 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

10, 100, 450, 2205, 11970, 66946, 383845, 2221688, 12947130, 75691595, 443447550, 2600917830, 15265923595, 89639239300, 526483671750, 3092701866155, 18169057652502, 106746028836790, 627171773700111, 3684942718387344
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 4 of A207717

Examples

			Some solutions for n=4
..1..0..1..0....0..1..1..0....0..1..1..0....1..0..1..0....1..1..1..1
..0..1..1..0....1..1..0..0....0..1..0..0....0..1..0..0....1..1..0..1
..1..0..1..0....0..1..1..0....0..1..1..0....1..1..1..0....0..1..1..1
..0..1..1..0....1..1..1..0....0..1..1..0....0..1..1..0....1..0..1..0
		

Formula

Empirical: a(n) = 8*a(n-1) +6*a(n-2) -138*a(n-3) +52*a(n-4) +850*a(n-5) -487*a(n-6) -2284*a(n-7) +1340*a(n-8) +2858*a(n-9) -1584*a(n-10) -1736*a(n-11) +885*a(n-12) +500*a(n-13) -238*a(n-14) -60*a(n-15) +28*a(n-16) +2*a(n-17) -a(n-18) for n>19

A207714 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

16, 256, 1644, 12015, 97580, 820820, 7070805, 61530000, 538903800, 4735474525, 41696434728, 367562042568, 3242398676595, 28614207114896, 252584682127428, 2229968979966475, 19689354946616388, 173855783327986060
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 5 of A207717

Examples

			Some solutions for n=4
..1..1..0..1..0....1..0..1..1..1....1..0..1..0..1....1..1..0..1..0
..1..1..0..1..1....1..1..0..1..0....1..1..0..1..0....0..1..0..1..0
..0..1..0..1..1....1..0..1..1..1....0..1..1..1..1....1..1..0..1..0
..1..1..0..1..1....0..1..0..1..1....1..1..0..1..1....0..1..0..1..0
		

Formula

Empirical: a(n) = 16*a(n-1) -42*a(n-2) -401*a(n-3) +1780*a(n-4) +3228*a(n-5) -21310*a(n-6) -7724*a(n-7) +117040*a(n-8) -14574*a(n-9) -345676*a(n-10) +104844*a(n-11) +593560*a(n-12) -209036*a(n-13) -617332*a(n-14) +210704*a(n-15) +393548*a(n-16) -121244*a(n-17) -151602*a(n-18) +42220*a(n-19) +33904*a(n-20) -9106*a(n-21) -4084*a(n-22) +1140*a(n-23) +217*a(n-24) -68*a(n-25) -2*a(n-26) +a(n-27) for n>28

A207715 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

26, 676, 6186, 66339, 805154, 10150118, 131365535, 1717508184, 22609656270, 298602852465, 3951916615062, 52361336460762, 694262252986965, 9209037126814876, 122184478450115942, 1621376985825702435
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 6 of A207717

Examples

			Some solutions for n=4
..1..0..1..0..1..1....1..1..0..1..0..0....0..1..0..1..0..0....1..0..1..1..0..1
..1..0..1..0..1..1....1..0..1..1..1..1....1..1..1..0..1..0....0..1..1..1..0..1
..1..0..1..0..1..0....0..1..0..1..0..0....0..1..0..1..0..0....1..1..1..1..0..0
..1..0..1..0..1..1....1..1..1..1..1..1....1..0..1..1..1..0....0..1..0..1..0..1
		

Formula

Empirical: a(n) = 23*a(n-1) -28*a(n-2) -2457*a(n-3) +10959*a(n-4) +103716*a(n-5) -634422*a(n-6) -2242422*a(n-7) +17887504*a(n-8) +26428898*a(n-9) -300826296*a(n-10) -148435430*a(n-11) +3302459147*a(n-12) -167725595*a(n-13) -24923250810*a(n-14) +9402329532*a(n-15) +133649558772*a(n-16) -78028556072*a(n-17) -520568587713*a(n-18) +375014950947*a(n-19) +1494707791108*a(n-20) -1218224909056*a(n-21) -3195077022510*a(n-22) +2826366520094*a(n-23) +5117419628861*a(n-24) -4809057001697*a(n-25) -6166506004962*a(n-26) +6089323867306*a(n-27) +5603655169466*a(n-28) -5787797018192*a(n-29) -3843410761191*a(n-30) +4150572495465*a(n-31) +1988163477936*a(n-32) -2251338950714*a(n-33) -773685065704*a(n-34) +923849679134*a(n-35) +225428240345*a(n-36) -286200161001*a(n-37) -48815174830*a(n-38) +66619716180*a(n-39) +7766794220*a(n-40) -11560521080*a(n-41) -891616995*a(n-42) +1477500185*a(n-43) +71608012*a(n-44) -136573112*a(n-45) -3795474*a(n-46) +8884698*a(n-47) +115712*a(n-48) -389954*a(n-49) -1066*a(n-50) +10767*a(n-51) -41*a(n-52) -164*a(n-53) +a(n-54) +a(n-55) for n>56

A207716 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

42, 1764, 23010, 364869, 6614706, 125165018, 2433018665, 47808913432, 945871724250, 18776278588295, 373498284322566, 7438170735812754, 148234787507973023, 2955383526419085268, 58936982246079930734
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 7 of A207717

Examples

			Some solutions for n=4
..1..0..1..0..1..1..1....1..0..1..0..1..0..1....1..0..1..1..1..1..1
..0..1..1..1..1..0..1....1..1..1..1..0..1..0....0..1..1..0..1..0..1
..1..0..1..1..0..1..1....0..1..0..1..1..1..1....1..0..1..1..0..1..0
..0..1..1..0..1..1..0....1..0..1..1..0..1..1....0..1..1..0..1..0..1
		

Formula

Empirical: a(n) = 40*a(n-1) -282*a(n-2) -6665*a(n-3) +88004*a(n-4) +344904*a(n-5) -8663479*a(n-6) +613102*a(n-7) +449678986*a(n-8) -784696689*a(n-9) -14510034086*a(n-10) +38888107636*a(n-11) +317154058520*a(n-12) -1048763024818*a(n-13) -4948204282296*a(n-14) +18757795539920*a(n-15) +57009962879834*a(n-16) -240273788794144*a(n-17) -495858144118598*a(n-18) +2297804186106544*a(n-19) +3298786022611236*a(n-20) -16840276663118931*a(n-21) -16869517369615904*a(n-22) +96278966455561326*a(n-23) +66010517847586175*a(n-24) -434857860935220172*a(n-25) -193643394761203004*a(n-26) +1566007846774736345*a(n-27) +401198108108779712*a(n-28) -4526925148531053234*a(n-29) -466963498595430881*a(n-30) +10556111031853493896*a(n-31) -248174939805450224*a(n-32) -19924566431829711262*a(n-33) +2595825875645108576*a(n-34) +30508965452881177332*a(n-35) -6765184346518027188*a(n-36) -37943664392122762496*a(n-37) +11434545707096862236*a(n-38) +38338656628650579776*a(n-39) -14260516559660914024*a(n-40) -31451278684937696028*a(n-41) +13716803334975384572*a(n-42) +20914295348560991788*a(n-43) -10382199138291729676*a(n-44) -11242537574990395402*a(n-45) +6247034736595945036*a(n-46) +4865156995705931112*a(n-47) -3003582182847141935*a(n-48) -1684591660284129228*a(n-49) +1156288609877255338*a(n-50) +462573544479209617*a(n-51) -356331346398612280*a(n-52) -99383273013527896*a(n-53) +87718068116575767*a(n-54) +16349564356236266*a(n-55) -17183361322338586*a(n-56) -1980300300856273*a(n-57) +2663817034475462*a(n-58) +161441843722648*a(n-59) -324407984841396*a(n-60) -6213973286766*a(n-61) +30748715280060*a(n-62) -348714921952*a(n-63) -2242208214002*a(n-64) +72501175036*a(n-65) +123981615306*a(n-66) -5543547964*a(n-67) -5102832536*a(n-68) +250075965*a(n-69) +152399188*a(n-70) -6965974*a(n-71) -3176447*a(n-72) +113552*a(n-73) +43148*a(n-74) -913*a(n-75) -332*a(n-76) +2*a(n-77) +a(n-78) for n>79

A207719 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 387, 2205, 12015, 66339, 364869, 2009223, 11059965, 60888177, 335192787, 1845279405, 10158455727, 55923440859, 307864679445, 1694829122631, 9330221332989, 51363898889337, 282763934436339, 1556646681947805
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 4 of A207717.

Examples

			Some solutions for n=4:
..1..0..1..0....1..0..1..0....1..1..0..0....0..1..0..1....1..0..1..1
..0..1..1..0....1..0..1..0....1..1..1..0....1..1..1..0....1..0..1..1
..1..0..1..0....1..0..1..0....1..0..1..0....0..1..0..1....1..0..1..1
..0..1..1..0....1..0..1..0....0..1..1..0....1..0..1..1....1..0..1..1
		

Crossrefs

Cf. A207717.

Formula

Empirical: a(n) = 4*a(n-1) +10*a(n-2) -8*a(n-3) -9*a(n-4) +6*a(n-5).
Empirical g.f.: 9*x*(1 - x)*(1 + 6*x + 3*x^2 - 6*x^3) / (1 - 4*x - 10*x^2 + 8*x^3 + 9*x^4 - 6*x^5). - Colin Barker, Jun 25 2018

A207720 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

14, 196, 1414, 11970, 97580, 805154, 6614706, 54438356, 447687702, 3682876386, 30292582572, 249180165066, 2049642453502, 16859642486512, 138680722738530, 1140735510979302, 9383250687334776, 77183044399764898, 634878161131002558
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 5 of A207717

Examples

			Some solutions for n=4
..1..0..1..1....1..0..1..0....1..0..1..0....0..1..0..0....0..1..0..0
..0..1..1..1....1..1..0..0....1..1..0..1....1..1..1..1....1..1..0..1
..1..0..1..1....1..0..1..0....0..1..1..1....0..1..1..1....1..1..0..0
..1..1..0..1....1..1..0..0....1..1..1..1....1..0..1..1....1..1..0..1
..0..1..1..1....1..1..1..0....1..0..1..0....1..1..1..0....1..1..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) +37*a(n-2) -3*a(n-3) -132*a(n-4) +26*a(n-5) +132*a(n-6) -59*a(n-7) -15*a(n-8) +6*a(n-9) +a(n-10)

A207721 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

22, 484, 5302, 66946, 820820, 10150118, 125165018, 1545006848, 19064074106, 235267721766, 2903258039792, 35827609743354, 442126584439650, 5456029684316684, 67329644638468630, 830875800786510138
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 6 of A207717

Examples

			Some solutions for n=4
..1..0..1..0....1..1..1..1....0..1..1..0....0..1..1..0....0..1..0..0
..1..1..0..0....1..1..1..1....1..1..0..1....1..1..0..1....0..1..0..1
..0..1..1..0....0..1..0..1....1..0..1..1....1..0..1..1....0..1..0..0
..1..1..1..0....1..1..1..0....0..1..1..1....0..1..0..1....0..1..0..1
..0..1..0..0....1..0..1..1....1..1..0..1....1..0..1..1....0..1..0..1
..1..0..1..0....1..1..0..0....1..1..1..0....1..1..0..1....0..1..0..1
		

Formula

Empirical: a(n) = 8*a(n-1) +63*a(n-2) -85*a(n-3) -424*a(n-4) +387*a(n-5) +724*a(n-6) -695*a(n-7) -148*a(n-8) +185*a(n-9) +13*a(n-10) -14*a(n-11) -a(n-12)
Showing 1-10 of 11 results. Next