cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208688 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 78, 81, 14, 26, 256, 282, 189, 196, 21, 42, 676, 768, 927, 490, 441, 31, 68, 1764, 2430, 2889, 3430, 1113, 961, 46, 110, 4624, 7086, 11727, 12096, 11067, 2449, 2116, 68, 178, 12100, 21588, 40581, 66094, 41013, 34627
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Table starts
..2....4....6.....10.....16......26.......42........68........110.........178
..4...16...36....100....256.....676.....1764......4624......12100.......31684
..6...36...78....282....768....2430.....7086.....21588......64230......193554
..9...81..189....927...2889...11727....40581....154359.....554733.....2062215
.14..196..490...3430..12096...66094...269766...1331988....5795314....27403166
.21..441.1113..11067..41013..301035..1346961...8556723...42184905...249260739
.31..961.2449..34627.133207.1332721..6398617..53340739..290904031..2188890625
.46.2116.5474.111642.444912.6219706.31733422.358035204.2130519946.21086588370

Examples

			Some solutions for n=4 k=3
..1..1..0....0..1..1....0..1..1....0..1..0....0..1..1....1..1..1....1..0..1
..0..1..0....0..1..1....0..1..0....0..1..0....0..1..1....1..1..1....1..1..0
..0..1..0....0..1..1....1..1..0....0..1..1....1..1..0....1..1..1....1..0..0
..1..1..0....0..1..1....0..1..1....1..1..0....0..1..0....0..1..0....1..0..1
		

Crossrefs

Column 1 is A038718(n+2)
Column 2 is A207069
Column 3 is A207724
Row 1 is A006355(n+2)
Row 2 is A206981

Formula

Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=2*a(k-1)+4*a(k-2)-3*a(k-3)
n=4: a(k)=a(k-1)+10*a(k-2)+2*a(k-3)-10*a(k-4)
n=5: a(k)=a(k-1)+17*a(k-2)+4*a(k-3)-32*a(k-4)
n=6: a(k)=a(k-1)+26*a(k-2)+6*a(k-3)-78*a(k-4)
n=7: a(k)=a(k-1)+39*a(k-2)+9*a(k-3)-180*a(k-4)
Showing 1-1 of 1 results.