cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207726 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 0 1 vertically.

Original entry on oeis.org

15, 225, 611, 2163, 8575, 27931, 88243, 288813, 926949, 2927115, 9278885, 29390445, 92717065, 292337359, 921806095, 2904391209, 9147369231, 28808166663, 90713456051, 285607327515, 899181685831, 2830809676285, 8911643119525
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 5 of A207729

Examples

			Some solutions for n=4
..1..0..1..1..1....1..0..1..1..1....1..0..1..1..0....0..0..1..1..0
..1..0..1..1..0....0..1..1..1..1....1..0..1..1..1....1..0..1..1..0
..1..0..1..1..0....0..0..1..1..1....0..0..1..1..0....0..1..1..1..1
..0..1..1..0..1....1..0..1..1..1....0..1..1..0..0....0..0..1..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) -3*a(n-2) +10*a(n-3) -27*a(n-4) -6*a(n-5) -15*a(n-6) +51*a(n-7) +41*a(n-8) +31*a(n-9) -51*a(n-10) -29*a(n-11) -27*a(n-12) +15*a(n-13) +6*a(n-14) +3*a(n-15) -4*a(n-16) +a(n-17) +a(n-19)