A207733 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 0 1 vertically.
21, 441, 1113, 2809, 27931, 277729, 1029231, 3814209, 27996255, 205492225, 919461235, 4114067881, 26135084283, 166026096369, 818513711715, 4035297528025, 23843629466995, 140886430854481, 730455853771371
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..1....1..0..1..1....1..1..0..1....1..0..1..1....0..1..1..0 ..1..0..0..1....0..1..1..1....1..0..1..1....0..1..1..1....0..1..1..1 ..1..1..0..1....0..0..1..1....1..0..0..1....0..0..1..1....0..1..1..0 ..1..0..0..1....1..0..1..1....1..0..0..1....1..0..1..1....1..1..1..0 ..1..0..0..1....0..0..1..1....1..1..0..1....0..1..1..1....0..1..1..0 ..1..0..0..1....0..0..1..1....1..0..0..1....0..0..1..1....0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +32*a(n-3) +670*a(n-4) +84*a(n-5) +270*a(n-6) -4602*a(n-7) -97188*a(n-8) -30636*a(n-9) +21060*a(n-10) +124488*a(n-11) +4076280*a(n-12) +1423656*a(n-13) +2847312*a(n-15) -37015056*a(n-16)
Comments