cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207747 Number of n X 3 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

6, 36, 102, 270, 798, 2354, 7210, 22232, 69570, 218950, 693810, 2207142, 7047274, 22559004, 72371822, 232562110, 748347990, 2410664906, 7772348106, 25076879856, 80954866538, 261464311606, 844780530762, 2730274274910, 8826217794378
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 3 of A207752.

Examples

			Some solutions for n=4:
..0..0..0....1..1..1....1..1..0....0..0..0....0..0..0....1..0..1....1..1..0
..1..1..1....1..1..1....0..1..0....1..0..1....0..1..0....1..0..1....1..0..1
..0..0..0....0..1..0....1..0..0....0..0..0....0..1..0....1..0..0....1..1..0
..1..1..1....1..1..1....0..1..0....1..0..1....0..0..0....1..0..1....1..0..1
		

Crossrefs

Cf. A207752.

Formula

Empirical: a(n) = 7*a(n-1) - 9*a(n-2) - 32*a(n-3) + 72*a(n-4) + 36*a(n-5) - 147*a(n-6) + 9*a(n-7) + 109*a(n-8) - 28*a(n-9) - 24*a(n-10) + 8*a(n-11) for n>12. Corrected by Colin Barker, Mar 06 2018
Empirical g.f.: 2*x*(3 - 3*x - 48*x^2 + 36*x^3 + 273*x^4 - 173*x^5 - 602*x^6 + 305*x^7 + 502*x^8 - 216*x^9 - 120*x^10 + 48*x^11) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 3*x + x^2)*(1 + x - x^2)*(1 - x - x^2)*(1 - 2*x - 4*x^2)). - Colin Barker, Mar 06 2018

A207746 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 16, 102, 900, 8778, 104976, 1341606, 20115225, 316615970, 5707953601, 106646250804, 2244863934369, 48526426817904, 1167193108267264, 28644642089792472, 774480816028370889, 21267135535735987266
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207752

Examples

			Some solutions for n=4
..0..1..0..0....1..1..0..1....0..1..0..1....1..1..0..1....0..1..0..0
..0..1..0..1....0..0..0..0....1..1..0..0....1..1..0..1....1..1..0..0
..0..0..0..0....1..1..0..1....1..1..0..1....0..1..0..0....1..0..0..0
..0..1..0..1....1..0..0..0....1..0..0..0....1..1..0..1....0..1..0..0
		

A207748 Number of nX4 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 289, 900, 3249, 11449, 42436, 157609, 597529, 2280100, 8791225, 34093921, 133033156, 521345889, 2051093521, 8093881156, 32021313025, 126943276681, 504097160004, 2004526450969, 7979839669321, 31795772223076, 126783929266569
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 4 of A207752

Examples

			Some solutions for n=4
..1..1..1..1....1..0..0..0....0..1..0..0....1..0..0..0....0..1..0..0
..0..0..0..0....1..1..0..1....0..1..0..1....0..1..0..0....0..0..0..0
..1..1..1..1....0..1..0..0....0..0..0..0....1..0..0..0....0..1..0..0
..0..0..0..0....1..1..0..1....0..1..0..1....1..1..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 9*a(n-1) -15*a(n-2) -70*a(n-3) +208*a(n-4) +148*a(n-5) -795*a(n-6) +15*a(n-7) +1267*a(n-8) -318*a(n-9) -840*a(n-10) +280*a(n-11) +176*a(n-12) -64*a(n-13) for n>14

A207749 Number of nX5 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

12, 144, 612, 2100, 8778, 34668, 147084, 617732, 2671488, 11581700, 50920910, 224964992, 1001727900, 4480199928, 20136395180, 90815818836, 410932519010, 1864187195364, 8476190423340, 38611887901692, 176175077736008
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 5 of A207752

Examples

			Some solutions for n=4
..1..0..1..0..1....0..0..0..0..0....1..0..1..0..0....1..1..1..1..1
..0..1..0..1..0....0..1..0..1..0....0..0..0..0..0....0..1..0..1..0
..1..1..1..1..1....0..1..0..0..0....1..0..1..0..0....1..1..1..1..1
..0..0..0..0..0....0..1..0..1..0....1..0..0..0..0....1..1..1..1..0
		

Formula

Empirical: a(n) = 12*a(n-1) -15*a(n-2) -318*a(n-3) +989*a(n-4) +3432*a(n-5) -15290*a(n-6) -19128*a(n-7) +121738*a(n-8) +55524*a(n-9) -583550*a(n-10) -56016*a(n-11) +1776187*a(n-12) -141444*a(n-13) -3467035*a(n-14) +588186*a(n-15) +4252641*a(n-16) -950232*a(n-17) -3104320*a(n-18) +827568*a(n-19) +1200096*a(n-20) -369792*a(n-21) -181440*a(n-22) +62208*a(n-23) for n>24

A207750 Number of nX6 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

16, 256, 1296, 4900, 23716, 104976, 509796, 2421136, 11943936, 58828900, 294946276, 1484406784, 7542922500, 38500718656, 197686944400, 1018981226916, 5273535630724, 27375958697616, 142523723188900, 743755656909456
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 6 of A207752

Examples

			Some solutions for n=4
..0..1..0..1..0..0....0..1..0..1..0..1....1..1..1..0..0..0....1..1..1..1..0..1
..0..1..0..1..0..1....0..0..0..0..0..0....0..0..0..0..0..0....0..1..0..1..0..1
..0..0..0..0..0..0....0..1..0..1..0..1....1..1..1..0..0..0....1..0..1..0..0..0
..0..1..0..1..0..1....0..1..0..0..0..0....0..0..0..0..0..0....0..1..0..1..0..1
		

Formula

Empirical: a(n) = 16*a(n-1) -51*a(n-2) -429*a(n-3) +2765*a(n-4) +2887*a(n-5) -49472*a(n-6) +27551*a(n-7) +474394*a(n-8) -614722*a(n-9) -2782958*a(n-10) +4898822*a(n-11) +10501999*a(n-12) -22329850*a(n-13) -25727935*a(n-14) +64110703*a(n-15) +39685329*a(n-16) -118628973*a(n-17) -34454062*a(n-18) +139468939*a(n-19) +9485400*a(n-20) -98917632*a(n-21) +9240912*a(n-22) +37628064*a(n-23) -8055936*a(n-24) -5645376*a(n-25) +1679616*a(n-26) for n>27

A207751 Number of nX7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

20, 400, 2340, 9450, 51590, 247860, 1341606, 6978660, 38171520, 206898250, 1147824290, 6372877952, 35814768750, 201958261240, 1147016892780, 6537970767786, 37441623486062, 215093421143100, 1239764709916950
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 7 of A207752

Examples

			Some solutions for n=4
..1..1..1..0..0..0..0....0..1..0..1..0..1..0....0..1..0..0..0..0..0
..0..1..0..1..0..0..0....0..0..0..0..0..0..0....1..1..1..0..1..0..1
..1..0..1..0..0..0..0....0..1..0..1..0..1..0....0..1..0..0..0..0..0
..1..1..1..1..0..0..0....0..1..0..0..0..0..0....1..0..1..0..1..0..1
		

Formula

Empirical: a(n) = 20*a(n-1) -51*a(n-2) -1431*a(n-3) +8935*a(n-4) +40417*a(n-5) -426101*a(n-6) -444083*a(n-7) +11365411*a(n-8) -4300391*a(n-9) -200417737*a(n-10) +232239905*a(n-11) +2518061713*a(n-12) -4164580427*a(n-13) -23481745867*a(n-14) +46800489827*a(n-15) +166445441485*a(n-16) -371915483333*a(n-17) -908779936543*a(n-18) +2189295925439*a(n-19) +3843112261849*a(n-20) -9750570404117*a(n-21) -12570760837627*a(n-22) +33142320325571*a(n-23) +31531972919492*a(n-24) -86008842255253*a(n-25) -59570349515902*a(n-26) +169294932682160*a(n-27) +82010381942544*a(n-28) -249200831975424*a(n-29) -77175689855936*a(n-30) +267826679018944*a(n-31) +42326080275840*a(n-32) -202109312236032*a(n-33) -4792436637696*a(n-34) +100229451300864*a(n-35) -9564035088384*a(n-36) -28820239810560*a(n-37) +5715890012160*a(n-38) +3536169467904*a(n-39) -990677827584*a(n-40) for n>41

A207753 Number of 4 X n 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

9, 81, 270, 900, 2100, 4900, 9450, 18225, 31185, 53361, 84084, 132496, 196560, 291600, 413100, 585225, 799425, 1092025, 1448370, 1920996, 2486484, 3218436, 4081350, 5175625, 6449625, 8037225, 9865800, 12110400, 14671680, 17774656
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 4 of A207752.

Examples

			Some solutions for n=4:
..1..0..0..0....1..1..0..1....0..0..0..0....1..0..1..0....1..1..1..1
..0..0..0..0....0..0..0..0....1..1..1..1....0..0..0..0....0..0..0..0
..1..0..0..0....1..1..0..1....0..1..0..1....1..0..1..0....1..1..1..1
..0..0..0..0....1..0..0..0....1..1..1..0....1..0..1..0....0..0..0..0
		

Crossrefs

Cf. A207752.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(9 + 63*x + 72*x^2 + 126*x^3 + 75*x^4 + 25*x^5 - 20*x^6 + 5*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Jun 25 2018

A207754 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

14, 196, 798, 3249, 8778, 23716, 51590, 112225, 213060, 404496, 698964, 1207801, 1947428, 3139984, 4800348, 7338681, 10754730, 15760900, 22315370, 31595641, 43472814, 59814756, 80333058, 107889769, 141927968, 186704896, 241237920
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 5 of A207752

Examples

			Some solutions for n=4
..1..1..0..0....1..1..0..0....1..0..0..0....1..1..1..1....1..0..0..0
..0..1..0..1....1..0..1..0....0..1..0..0....1..1..0..0....0..1..0..1
..1..1..0..1....0..1..0..0....1..0..0..0....1..1..1..1....1..0..0..0
..1..1..0..1....1..0..1..0....1..1..0..0....0..1..0..0....1..1..0..1
..1..0..0..0....1..1..1..0....1..1..0..0....1..1..1..1....0..1..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A207755 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

22, 484, 2354, 11449, 34668, 104976, 247860, 585225, 1182690, 2390116, 4339622, 7879249, 13226584, 22202944, 35099688, 55487601, 83652270, 126112900, 182947930, 265396681, 372933572, 524043664, 716908764, 980754489, 1311368058
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 6 of A207752

Examples

			Some solutions for n=4
..1..0..0..0....1..0..1..0....1..1..1..0....1..0..0..0....0..1..0..0
..0..0..0..0....0..1..0..0....0..1..0..1....0..1..0..1....0..0..0..0
..1..0..0..0....1..1..1..0....1..0..1..0....1..0..0..0....0..1..0..0
..0..0..0..0....1..0..0..0....0..1..0..1....1..1..0..1....0..0..0..0
..1..0..0..0....1..1..1..0....1..1..1..0....0..1..0..1....0..1..0..0
..0..0..0..0....1..1..0..0....0..1..0..1....1..1..0..1....0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A207756 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

35, 1225, 7210, 42436, 147084, 509796, 1341606, 3530641, 7826035, 17347225, 34169660, 67305616, 121583280, 219632400, 371285460, 627652809, 1006704699, 1614673489, 2481460982, 3813556516, 5656542892, 8390193604, 12078020682
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 7 of A207752

Examples

			Some solutions for n=4
..0..0..0..0....1..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0
..0..1..0..1....0..0..0..0....1..1..0..1....1..1..1..1....1..0..0..0
..0..0..0..0....1..0..0..0....1..1..1..1....0..0..0..0....1..0..1..0
..0..1..0..1....0..0..0..0....0..1..0..0....1..1..1..1....1..0..0..0
..0..1..0..0....1..0..0..0....1..1..1..1....1..0..1..0....1..0..1..0
..0..1..0..1....0..0..0..0....1..0..0..0....0..1..0..1....0..0..0..0
..0..1..0..0....1..0..0..0....1..1..1..1....1..0..1..0....1..0..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)
Showing 1-10 of 10 results.