This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207778 #52 Mar 22 2023 20:34:17 %S A207778 1,2,12,112,112,2112,2112,122112,122112,12122112,12122112,12122112, %T A207778 111212122112,1111212122112,11111212122112,11111212122112, %U A207778 11111212122112,11111212122112,111211111212122112,111211111212122112,111211111212122112,111211111212122112 %N A207778 Smallest multiple of 2^n using only 1's and 2's. %C A207778 An induction-based argument can be used to show that this sequence is actually infinite. %C A207778 Problem 1, proposed during the 5th All-Soviet-Union Mathematical Competition in 1971 at Riga (Pertsel link), asks for a proof that this sequence is infinite. - _Bernard Schott_, Mar 20 2023 %D A207778 J. B. Tabov and P. J. Taylor, Methods of Problem Solving, Book 1, Australian Mathematics Trust, 1996. %H A207778 Alois P. Heinz, <a href="/A207778/b207778.txt">Table of n, a(n) for n = 0..300</a> %H A207778 Vladimir A. Pertsel, <a href="https://olympiads.win.tue.nl/imo/soviet/RusMath.html">Problems of the All-Soviet-Union Mathematical Competitions 1961-1986</a>, the 5th competition, Riga, 1971, problem 144. %H A207778 <a href="/index/O#Olympiads">Index to sequences related to Olympiads and other Mathematical competitions</a>. %F A207778 a(n) <= A053312(n). %t A207778 Table[m = 1; p = 2^k; While[Total@ DigitCount[m p][[3 ;; -1]] > 0, m++]; m p, {k, 0, 11}] (* _Michael De Vlieger_, Mar 17 2023 *) %o A207778 (PARI) a(n) = my(k=1, d=digits(k*2^n)); while (!((vecmin(d)>=1) && (vecmax(d)<=2)), k++; d=digits(k*2^n)); k*2^n; \\ _Michel Marcus_, Mar 15 2023 %Y A207778 Cf. A000079, A007931, A023396, A053312, A126933. %K A207778 nonn,base %O A207778 0,2 %A A207778 _Lekraj Beedassy_, Feb 20 2012 %E A207778 More terms from _Alois P. Heinz_, Feb 20 2012