A207782 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 0 and 1 0 1 vertically.
13, 169, 611, 2173, 6766, 22322, 75557, 246840, 813373, 2700122, 8903029, 29382065, 97138711, 320761206, 1059193011, 3498970917, 11556218541, 38166121069, 126060198626, 416354317573, 1375125698303, 4541820382522, 15000835767813
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..0..0....1..1..1..1..0....0..1..0..1..0....0..1..0..0..1 ..0..1..0..1..0....1..0..1..0..1....1..0..0..1..0....0..1..0..1..0 ..1..1..0..0..1....0..0..1..0..1....1..0..1..0..1....1..1..1..0..0 ..0..0..1..0..0....0..1..0..1..0....0..1..0..0..1....0..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A207785.
Formula
Empirical: a(n) = a(n-1) +26*a(n-3) +11*a(n-4) +11*a(n-5) -159*a(n-6) -131*a(n-7) -15*a(n-8) +405*a(n-9) +166*a(n-10) -133*a(n-11) -459*a(n-12) +422*a(n-13) -183*a(n-14) -218*a(n-15) -63*a(n-16) +1668*a(n-17) -64*a(n-18) -1008*a(n-19) -555*a(n-20) +963*a(n-21) -269*a(n-22) -127*a(n-23) -263*a(n-24) +742*a(n-25) +360*a(n-26) -571*a(n-27) -218*a(n-28) +176*a(n-29) -105*a(n-30) -307*a(n-31) +2*a(n-32) +187*a(n-33) +39*a(n-34) +15*a(n-35) -8*a(n-36) -19*a(n-37) +2*a(n-38) +14*a(n-39) -6*a(n-41) for n>45.
Comments