This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207809 #18 Jul 04 2016 03:56:26 %S A207809 10,100,370,1970,9040,43990,209050,1002960,4793390,22944590,109759520, %T A207809 525189790,2512723030,12022412680,57521607650,275215898890, %U A207809 1316784620900,6300231318630,30143802148430,144224703156300,690051081572450 %N A207809 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically. %C A207809 Row 4 of A207808. %H A207809 Robert Israel and R. H. Hardin, <a href="/A207809/b207809.txt">Table of n, a(n) for n = 1..1460</a> (n = 1..210 from R. H. Hardin) %H A207809 Robert Israel, <a href="/A207809/a207809.mpl.txt">Maple code to verify recursion</a> %H A207809 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,13,4,-12,1,1). %F A207809 Empirical: a(n) = 2*a(n-1) +13*a(n-2) +4*a(n-3) -12*a(n-4) +a(n-5) +a(n-6) %F A207809 From _Robert Israel_, Jul 03 2016: (Start) %F A207809 The empirical recursion is true: see link for Maple verification. %F A207809 G.f.: (10*x+80*x^2+40*x^3-110*x^4+10*x^5+10*x^6)/(1-2*x-13*x^2-4*x^3+12*x^4-x^5-x^6). (End) %e A207809 Some solutions for n=4: %e A207809 ..0..1..1..0....0..1..0..1....0..1..1..0....0..1..1..0....1..0..1..1 %e A207809 ..1..1..0..0....1..0..1..1....0..1..1..1....0..1..0..1....0..1..0..0 %e A207809 ..1..1..0..0....1..0..1..0....1..1..0..1....0..1..0..1....0..1..0..0 %e A207809 ..0..1..1..1....1..1..0..0....1..1..0..1....1..1..0..1....1..0..1..0 %p A207809 f:= gfun:-rectoproc({a(n)=2*a(n-1) +13*a(n-2) +4*a(n-3) -12*a(n-4) +a(n-5) +a(n-6), seq(a(i)=[10,100,370,1970,9040,43990][i],i=1..6)},a(n),remember): %p A207809 map(f, [$1..50]); # _Robert Israel_, Jul 03 2016 %Y A207809 Cf. A207808. %K A207809 nonn %O A207809 1,1 %A A207809 _R. H. Hardin_, Feb 20 2012