A207811 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.
26, 676, 4238, 44538, 379444, 3511534, 31431114, 285153752, 2572767886, 23265635822, 210190098664, 1899710583862, 17166646906318, 155137779620824, 1401955916796682, 12669461215751574, 114492932648683056
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1..0....1..1..0..0....1..1..0..1....1..1..1..0....0..1..0..0 ..1..1..1..1....1..1..1..0....1..0..1..1....1..1..1..1....1..0..1..1 ..1..1..1..1....1..0..1..0....1..0..1..0....0..1..1..1....1..0..1..1 ..1..1..0..0....1..0..1..0....0..1..1..0....0..1..0..1....0..1..0..1 ..1..1..0..0....1..0..1..1....0..1..0..1....1..1..0..1....0..1..0..0 ..0..1..1..1....0..1..0..1....0..1..0..1....1..0..1..0....0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 6*a(n-1) +47*a(n-2) -149*a(n-3) -401*a(n-4) +1365*a(n-5) +291*a(n-6) -3183*a(n-7) +1053*a(n-8) +2463*a(n-9) -1038*a(n-10) -814*a(n-11) +294*a(n-12) +112*a(n-13) -30*a(n-14) -5*a(n-15) +a(n-16)
Comments