This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207813 #14 Oct 02 2024 13:22:56 %S A207813 2,4,9,17,19,25,27,30,40,43,46,53,56,59,61,67,69,72,77,82,85,93,95,98, %T A207813 101,103,108,111,114,119,124,129,135,137,140,150,153,161,166,169,171, %U A207813 177,179,182,187,195,197,205,208,211,213,218,224,229,237,239 %N A207813 Numbers that match irreducible Zeckendorf polynomials. %C A207813 The Zeckendorf representation of a positive integer n is a unique sum %C A207813 c(k-2)F(k) + c(k-3)F(k-1) + ... + c(1)F(3) + c(0)F(2), %C A207813 where F=A000045 (Fibonacci numbers), c(k-2)=1, and for j=0,1,...,k-3, there are two restrictions on coefficients: c(j) is 0 or 1, and c(j)c(j+1)=0; viz., no two consecutive Fibonacci numbers appear. The Zeckendorf polynomial Z(n,x) is introduced here as %C A207813 c(k-2)x^(k-2) + c(k-3)x^(k-3) + ... + c(1)x + c(0). %C A207813 The name refers to irreducibility over the field of rational numbers. %e A207813 n k Z(n) Z(n,x) irreducible %e A207813 1 2 1 1 no %e A207813 2 3 10 x yes %e A207813 3 4 100 x^2 no %e A207813 4 4 101 x^2 + 1 yes %e A207813 5 5 1000 x^3 no %e A207813 6 5 1001 x^3 + 1 no %e A207813 7 5 1010 x^3 + x no %e A207813 8 5 10000 x^4 no %e A207813 9 5 10001 x^4 + 1 yes %t A207813 fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], %t A207813 t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], %t A207813 AppendTo[fr, 1]; t = t - Fibonacci[k], %t A207813 AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], %t A207813 {n, 1, 350}]; %t A207813 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207813 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207813 Table[p[n, x], {n, 1, 40}] (* Zeckendorf polynomials *) %t A207813 u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], %t A207813 AppendTo[u, n]], {n, 300}]; u (* A207813 *) %Y A207813 Cf. A206073, A206074. %K A207813 nonn,base %O A207813 1,1 %A A207813 _Clark Kimberling_, Feb 20 2012