This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207817 #24 Sep 27 2020 15:21:00 %S A207817 1,12,840,92400,12612600,1955457504,329820499008,59064793444800, %T A207817 11062343605599000,2145275226626532000,427760079188506384320, %U A207817 87255985739923260973440,18139177035549431752363200,3831766983249199488516960000,820623729024838763928509760000 %N A207817 a(n) = (4*n)! / (n!^4 * (n+1)). %C A207817 Number of walks in 4-dimensions using steps (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) from (0,0,0,0) to (n,n,n,n) such that after each step we have y>=x. %C A207817 Number of possible necklaces consisting of n white beads, n-1 red beads, n-1 green beads, and n-1 blue beads (two necklaces are considered equivalent if they differ by a cyclic permutation). %C A207817 Note: the generalizations of this formula and the relation between d-dimensional walks and d-colored necklaces are also true for all d, d>=5. %F A207817 G.f.: 3F2(1/4,1/2,3/4;1,2;256*x). - _Benedict W. J. Irwin_, Jul 13 2016 %F A207817 D-finite with recurrence n^2*(n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - _R. J. Mathar_, Sep 27 2020 %p A207817 with(combinat, multinomial): seq(multinomial(4*n, n$4)/(n+1), n=0..20); %t A207817 CoefficientList[Series[HypergeometricPFQ[{1/4, 1/2, 3/4}, {1, 2}, 256 x], {x, 0, 20}], x] (* _Benedict W. J. Irwin_, Jul 13 2016 *) %K A207817 nonn,walk %O A207817 0,2 %A A207817 _Thotsaporn Thanatipanonda_, Feb 20 2012