This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207823 #32 Feb 18 2020 12:34:41 %S A207823 1,4,1,15,8,1,56,46,12,1,209,232,93,16,1,780,1091,592,156,20,1,2911, %T A207823 4912,3366,1200,235,24,1,10864,21468,17784,8010,2120,330,28,1,40545, %U A207823 91824,89238,48624,16255,3416,441,32,1,151316,386373,430992,275724,111524,29589,5152,568,36,1 %N A207823 Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order). %C A207823 Riordan array (1/(1-4*x+x^2), x/(1-4*x+x^2)). %C A207823 Subtriangle of the triangle given by (0, 4, -1/4, 1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. %C A207823 Unsigned version of triangles in A124029 and in A159764. %C A207823 For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4} containing k-1 letters equal 4 and avoiding 01. - _Milan Janjic_, Dec 20 2016 %H A207823 Rigoberto Flórez, Leandro Junes, José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez/florez4.html">Further Results on Paths in an n-Dimensional Cubic Lattice</a>, J. Int. Seq. 21 (2018), #18.1.2. %H A207823 Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4. %F A207823 Recurrence: T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k). %F A207823 Diagonal sums are 4^n = A000302(n). %F A207823 Row sums are A004254(n+1). %F A207823 G.f.: 1/(1-4*x+x^2-y*x) %F A207823 T(n,n) = 1, T(n+1,n) = 4*n+4 = A008586(n+1), T(n+2,n) = (n+1)*(8n+15) = A139278(n+1). %F A207823 T(n,0) = A001353(n+1). %e A207823 Triangle begins: %e A207823 1 %e A207823 4, 1 %e A207823 15, 8, 1 %e A207823 56, 46, 12, 1 %e A207823 209, 232, 93, 16, 1 %e A207823 780, 1091, 592, 156, 20, 1 %e A207823 2911, 4912, 3366, 1200, 235, 24, 1 %e A207823 10864, 21468, 17784, 8010, 2120, 330, 28, 1 %e A207823 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1 %e A207823 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1 %e A207823 ... %e A207823 Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins: %e A207823 1 %e A207823 0, 1 %e A207823 0, 4, 1 %e A207823 0, 15, 8, 1 %e A207823 0, 56, 46, 12, 1 %e A207823 0, 209, 232, 93, 16, 1 %e A207823 ... %t A207823 With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* _Michael De Vlieger_, Apr 25 2018 *) %Y A207823 Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5). %K A207823 easy,nonn,tabl %O A207823 0,2 %A A207823 _Philippe Deléham_, Feb 20 2012 %E A207823 Offset changed to 0 by _Georg Fischer_, Feb 18 2020