cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207840 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 72, 240, 704, 2080, 6216, 18496, 55000, 163760, 487296, 1450192, 4315896, 12844160, 38224536, 113757504, 338545344, 1007520656, 2998410360, 8923354336, 26556156776, 79031879392, 235201123584, 699965244000, 2083116504872
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Column 3 of A207845.

Examples

			Some solutions for n=4:
..1..1..1....0..1..1....1..1..0....1..1..0....1..0..1....0..1..0....0..1..1
..1..0..1....1..0..1....1..0..1....1..0..0....1..0..0....0..1..0....1..0..0
..0..1..0....0..1..0....0..1..1....0..1..1....0..1..0....1..0..1....1..0..1
..0..1..1....1..1..1....0..1..0....1..1..0....1..0..1....0..1..1....0..1..0
		

Crossrefs

Cf. A207845.

Formula

Empirical: a(n) = a(n-1) + 4*a(n-2) + 5*a(n-3) + 2*a(n-4) - a(n-5) + a(n-6) for n>8.
Empirical g.f.: 2*x*(3 + 15*x + 6*x^2 - 3*x^3 - 8*x^4 - 5*x^5 + 3*x^6 - 2*x^7) / (1 - x - 4*x^2 - 5*x^3 - 2*x^4 + x^5 - x^6). - Colin Barker, Feb 21 2018

A207839 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 72, 780, 10144, 181896, 5346600, 235865752, 13718515360, 1274547293612, 182632256870400, 35910248805192512, 10519355362828229320, 4986223632232028372840, 3295839087283933350008520
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Diagonal of A207845

Examples

			Some solutions for n=4
..1..0..1..1....1..0..1..0....0..1..1..1....0..1..1..1....1..0..1..0
..1..0..1..1....0..1..0..0....1..0..1..0....1..0..1..1....1..1..0..1
..0..1..0..0....1..1..1..1....1..1..0..1....0..1..0..0....0..1..1..1
..0..1..0..0....1..0..1..0....0..1..1..1....1..1..1..0....1..0..1..0
		

A207841 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

10, 100, 180, 780, 2816, 9672, 35952, 130152, 462660, 1691356, 6097536, 21894544, 79589224, 286756120, 1033424532, 3745763500, 13500573120, 48729856032, 176324800080, 635878928776, 2296600176396, 8301910089028, 29954416843008
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 4 of A207845

Examples

			Some solutions for n=4
..0..1..1..0....0..1..1..0....0..1..0..1....0..1..1..1....0..1..0..1
..0..1..0..1....0..1..0..1....0..1..1..0....1..0..1..0....1..0..1..1
..1..0..1..0....1..0..1..1....1..0..1..1....0..1..0..1....1..0..1..0
..1..1..0..1....1..1..1..0....0..1..0..0....1..0..1..1....0..1..0..1
		

Formula

Empirical: a(n) = 3*a(n-2) +36*a(n-3) +6*a(n-4) +2*a(n-5) -84*a(n-6) +34*a(n-7) +89*a(n-8) -260*a(n-9) +91*a(n-10) -42*a(n-11) +84*a(n-12) -2*a(n-13) +8*a(n-14) +36*a(n-15) +3*a(n-16) +a(n-18) for n>20

A207842 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

16, 256, 432, 2320, 10144, 41444, 185136, 813824, 3485460, 15230748, 66498048, 288260144, 1254699732, 5464724040, 23754515904, 103342176624, 449732042272, 1956188201356, 8510004040560, 37025612095680, 161072178927292
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 5 of A207845

Examples

			Some solutions for n=4
..0..1..0..1..1....1..0..1..0..1....1..0..1..0..0....0..1..0..1..0
..1..0..1..0..0....0..1..0..1..1....0..1..0..1..1....0..1..0..1..1
..0..1..1..1..0....0..1..0..1..0....1..1..1..1..1....1..0..1..0..0
..0..1..0..1..1....1..0..1..0..1....1..0..1..0..0....0..1..0..1..0
		

Formula

Empirical: a(n) = 3*a(n-2) +48*a(n-3) +76*a(n-4) +109*a(n-5) -87*a(n-6) -231*a(n-7) -212*a(n-8) -604*a(n-9) -224*a(n-10) -993*a(n-11) +224*a(n-12) -604*a(n-13) +212*a(n-14) -231*a(n-15) +87*a(n-16) +109*a(n-17) -76*a(n-18) +48*a(n-19) -3*a(n-20) +a(n-22) for n>24

A207843 Number of n X 6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

26, 676, 1044, 7140, 38208, 181896, 1006572, 5427216, 27640140, 148310668, 788944896, 4112349344, 21907830412, 115744406080, 608431534788, 3233027543492, 17038265421312, 89883033240864, 476754748569660
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Column 6 of A207845.

Examples

			Some solutions for n=4
..0..1..1..0..1..0....0..1..0..1..0..1....1..0..1..1..0..0....0..1..0..1..0..1
..0..1..0..1..1..0....1..0..1..1..1..0....0..1..0..1..0..0....1..0..1..1..0..1
..1..0..1..1..0..1....1..0..1..0..1..0....1..0..1..0..1..1....1..0..1..0..1..0
..1..1..1..0..1..1....0..1..0..1..0..1....0..1..0..1..1..1....0..1..0..1..1..0
		

Crossrefs

Cf. A207845.

Formula

Empirical: a(n) = 3*a(n-2) +176*a(n-3) +6*a(n-4) +99*a(n-5) -8129*a(n-6) +398*a(n-7) +270*a(n-8) +127777*a(n-9) -5812*a(n-10) -107071*a(n-11) -456227*a(n-12) -82353*a(n-13) +1474764*a(n-14) -4912465*a(n-15) +1223294*a(n-16) -7626447*a(n-17) +36697941*a(n-18) -1808355*a(n-19) +23999810*a(n-20) -33214987*a(n-21) -1842974*a(n-22) -52488221*a(n-23) -196746622*a(n-24) -32663475*a(n-25) +28940133*a(n-26) +258585179*a(n-27) +52300790*a(n-28) +77837185*a(n-29) +277515200*a(n-30) +72896175*a(n-31) -41367898*a(n-32) -258426493*a(n-33) -29878859*a(n-34) -31233625*a(n-35) -196727284*a(n-36) -53806519*a(n-37) +143598*a(n-38) +33211005*a(n-39) -23761682*a(n-40) -2481233*a(n-41) +36692389*a(n-42) -7609405*a(n-43) -1111958*a(n-44) +4911383*a(n-45) -1466184*a(n-46) -41931*a(n-47) -456305*a(n-48) -107365*a(n-49) +10870*a(n-50) -127799*a(n-51) -272*a(n-52) +444*a(n-53) -8129*a(n-54) +99*a(n-55) -8*a(n-56) -176*a(n-57) -3*a(n-58) -a(n-60) for n>62.

A207844 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

42, 1764, 2520, 21600, 140032, 794768, 5346600, 35345040, 217844880, 1406403632, 9173045376, 58174755912, 372634101736, 2407973848320, 15409799757744, 98700041311176, 634975561066176, 4073542031777904, 26114933024294400
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 7 of A207845

Examples

			Some solutions for n=4
..0..1..0..1..0..1..0....0..1..1..1..1..1..0....0..1..0..1..0..1..0
..0..1..0..1..0..1..1....1..0..1..0..1..0..0....0..1..1..0..1..0..1
..1..0..1..0..1..0..0....0..1..0..1..0..1..1....1..0..1..0..1..0..0
..1..0..1..0..1..0..1....0..1..1..1..0..1..1....1..1..0..1..0..1..0
		

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +277*a(n-3) +94*a(n-4) -133*a(n-5) -24873*a(n-6) -20838*a(n-7) -5448*a(n-8) +1013206*a(n-9) +1178196*a(n-10) +345358*a(n-11) -20388279*a(n-12) -31401473*a(n-13) -5064823*a(n-14) +177759190*a(n-15) +447178587*a(n-16) -42370993*a(n-17) +221707828*a(n-18) -3472246513*a(n-19) +2126812855*a(n-20) -16522889058*a(n-21) +14113194683*a(n-22) -25103346639*a(n-23) +115620455013*a(n-24) -27753419498*a(n-25) +126010955219*a(n-26) -188212795531*a(n-27) +38263474036*a(n-28) -172820082095*a(n-29) -1085943553214*a(n-30) -56427614115*a(n-31) -684977022197*a(n-32) +4479084474672*a(n-33) -459401473779*a(n-34) +1873655827983*a(n-35) -488810448916*a(n-36) +1455649747737*a(n-37) +1815531402246*a(n-38) -19088607418187*a(n-39) +2680133435998*a(n-40) -6417644855951*a(n-41) +14698297994257*a(n-42) -8261435689958*a(n-43) -3728425944069*a(n-44) +35268672175011*a(n-45) -6611097708372*a(n-46) +9412775701425*a(n-47) -26978805597956*a(n-48) +14830428729311*a(n-49) +5712715442952*a(n-50) -37836249661651*a(n-51) +10509327829811*a(n-52) -4997305817760*a(n-53) +13536154618699*a(n-54) -8299126102363*a(n-55) -3112330657906*a(n-56) +19954553646289*a(n-57) -6756609513568*a(n-58) +726779325183*a(n-59) -259421869262*a(n-60) +801155338903*a(n-61) +721826137189*a(n-62) -4463797278464*a(n-63) +1549246129003*a(n-64) +146922977369*a(n-65) -994848561216*a(n-66) +311012884307*a(n-67) +3524197306*a(n-68) +229248110469*a(n-69) -38710430265*a(n-70) -17234211018*a(n-71) +122761803753*a(n-72) -21220701103*a(n-73) -10976351975*a(n-74) +17329590128*a(n-75) -2860756313*a(n-76) -3009111259*a(n-77) +292257232*a(n-78) -168188347*a(n-79) -421751593*a(n-80) -176952632*a(n-81) -5487881*a(n-82) -31539485*a(n-83) -20781835*a(n-84) -285046*a(n-85) -1224456*a(n-86) -1031306*a(n-87) -15740*a(n-88) -21930*a(n-89) -25061*a(n-90) -357*a(n-91) -96*a(n-92) -277*a(n-93) -2*a(n-94) +a(n-95) -a(n-96) for n>98

A207846 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 72, 180, 432, 1044, 2520, 6084, 14688, 35460, 85608, 206676, 498960, 1204596, 2908152, 7020900, 16949952, 40920804, 98791560, 238503924, 575799408, 1390102740, 3356004888, 8102112516, 19560229920, 47222572356, 114005374632
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Row 3 of A207845.

Examples

			Some solutions for n=4:
..1..1..1..1....1..1..0..0....1..1..0..1....1..0..1..1....0..1..0..0
..0..1..0..0....1..0..1..1....0..1..1..1....1..1..0..0....1..0..1..1
..1..0..1..1....0..1..1..0....1..0..1..0....0..1..1..0....1..1..1..0
		

Crossrefs

Cf. A207845.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) for n>3.
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: 6*x*(1 + 4*x - x^2) / (1 - 2*x - x^2).
a(n) = 9*(sqrt(2)*((1-sqrt(2))^n*(1+sqrt(2)) + (-1+sqrt(2))*(1+sqrt(2))^n)) for n>2.
(End)

A207847 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

10, 100, 240, 780, 2320, 7140, 21600, 65980, 200400, 610740, 1857520, 5656380, 17211840, 52396900, 159466800, 485403660, 1477389520, 4496881380, 13687155360, 41660429500, 126802853520, 385955704500, 1174746099760, 3575622750780
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Row 4 of A207845.

Examples

			Some solutions for n=4:
..1..0..1..0....1..0..1..1....0..1..1..1....1..1..1..0....0..1..0..1
..0..1..0..0....1..0..1..1....1..0..1..0....1..0..1..0....1..0..1..1
..1..1..1..1....0..1..0..0....0..1..0..1....0..1..0..1....0..1..0..0
..1..0..1..0....0..1..0..0....1..0..1..1....1..1..1..1....1..1..0..1
		

Crossrefs

Cf. A207845.

Formula

Empirical: a(n) = a(n-1) + 6*a(n-2) + a(n-3) - a(n-4) for n>5.
Empirical g.f.: 10*x*(1 + 9*x + 8*x^2 - 7*x^3 + x^4) / (1 - x - 6*x^2 - x^3 + x^4). - Colin Barker, Jun 25 2018

A207848 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

16, 256, 704, 2816, 10144, 38208, 140032, 524480, 1928000, 7206080, 26535520, 99030016, 365153536, 1361114752, 5024242112, 18709799552, 69123162272, 257205919680, 950917193216, 3536088581440, 13080799664192, 48617201294144
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Row 5 of A207845.

Examples

			Some solutions for n=4:
..0..1..0..0....0..1..1..1....0..1..0..1....1..0..1..0....1..1..0..0
..1..1..0..1....1..0..1..1....0..1..0..1....1..1..0..1....1..0..1..1
..1..0..1..0....0..1..0..0....1..0..1..0....0..1..1..1....0..1..1..0
..0..1..0..1....1..1..1..0....1..0..1..1....1..0..1..0....0..1..0..0
..0..1..1..0....1..0..1..1....0..1..0..0....1..1..0..1....1..0..1..1
		

Crossrefs

Cf. A207845.

Formula

Empirical: a(n) = 15*a(n-2) + 4*a(n-3) - 32*a(n-4) - 4*a(n-5) + 15*a(n-6) - a(n-8) for n>9.
Empirical g.f.: 16*x*(1 + 16*x + 29*x^2 - 68*x^3 - 58*x^4 + 88*x^5 - 5*x^6 - 8*x^7 + x^8) / (1 - 15*x^2 - 4*x^3 + 32*x^4 + 4*x^5 - 15*x^6 + x^8). - Colin Barker, Jun 26 2018

A207849 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

26, 676, 2080, 9672, 41444, 181896, 794768, 3479268, 15223104, 66632488, 291591092, 1276262520, 5585326656, 24445752916, 106984774208, 468241205640, 2049246237012, 8968858409576, 39252328435216, 171793006303620
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 6 of A207845

Examples

			Some solutions for n=4
..1..0..1..1....0..1..1..0....0..1..0..1....1..1..0..1....0..1..1..1
..1..1..0..1....0..1..0..1....0..1..0..0....0..1..1..0....1..0..1..0
..0..1..0..0....1..0..1..1....1..0..1..0....1..0..1..0....0..1..0..1
..1..0..1..0....0..1..1..0....1..0..1..1....1..1..0..1....0..1..0..1
..1..1..0..1....0..1..0..0....0..1..0..1....0..1..0..1....1..0..1..0
..0..1..0..1....1..0..1..1....1..0..1..0....1..0..1..0....1..1..0..1
		

Formula

Empirical: a(n) = 3*a(n-1) +17*a(n-2) -45*a(n-3) -47*a(n-4) +155*a(n-5) -155*a(n-7) +47*a(n-8) +45*a(n-9) -17*a(n-10) -3*a(n-11) +a(n-12) for n>13
Showing 1-10 of 11 results. Next