This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207851 #32 Jun 17 2019 02:51:45 %S A207851 4,16,324,12100,595984,35236096,2363709924,174221090404, %T A207851 13815880848784,1161868621405636,102544273501721104, %U A207851 9424551852935116804,896612457556434503824,87881363502264179831824,8840846163309028336017124 %N A207851 Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with only central 1-1 cut (no other 1-1 cuts). %C A207851 Central cut is a 1-1 cut at the center of the meander (the i-line is for i=n). %D A207851 A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190. %D A207851 A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159. %H A207851 Panayotis Vlamos, <a href="/A207851/b207851.txt">Table of n, a(n) for n = 1..22</a> %H A207851 Iwan Jensen, <a href="http://arxiv.org/abs/cond-mat/9910313">Enumeration of plane meanders</a>, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999. %H A207851 S. K. Lando and A. K. Zvonkin, <a href="http://dx.doi.org/10.1016/0304-3975(93)90316-L">Plane and projective meanders</a>, Theoretical Computer Science Vol. 117, pp. 227-241, 1993. %H A207851 A. Panayotopoulos and P. Tsikouras, <a href="https://msh.revues.org/2808">The multimatching property of nested sets</a>, Math. & Sci. Hum. 149 (2000), 23-30. %H A207851 A. Panayotopoulos and P. Tsikouras, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Panayotopoulos/panayo4.html">Meanders and Motzkin Words</a>, J. Integer Seqs., Vol. 7, 2004. %H A207851 A. Panayotopoulos and P. Vlamos, <a href="http://dx.doi.org/10.1007/978-3-642-33412-2_49">Cutting Degree of Meanders</a>, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012 %o A207851 (C/C++) int a(int n){ %o A207851 return w2(i)^2; %o A207851 } %o A207851 int w1(int order, int i){ %o A207851 if (i%2==0) error("error in w1(%d,%d), i is even\n",order,i); %o A207851 if (order%2) error("error in w1(%d,%d), order is odd\n",order,i); %o A207851 return w2(i+1)*w(order-i+1); %o A207851 } %o A207851 int w2(int order){ %o A207851 if (order%2) error("error in w2(%d), order is odd\n",order); %o A207851 return w(order)-w3(order); %o A207851 } %o A207851 int w3(int order){ %o A207851 if (order%2) error("error in w3(%d), order is odd\n",order); %o A207851 int sum=0; %o A207851 int i; %o A207851 for (i=3;i<=order-3;i+=2) %o A207851 sum+=w1(order,i); %o A207851 return sum; %o A207851 } %o A207851 // w(int i), no source here, is the respective meandric number according to Jensen A005315 %Y A207851 Cf. A005315, A192927. %K A207851 nonn %O A207851 1,1 %A A207851 _Panayotis Vlamos_ and _Antonios Panayotopoulos_, Feb 21 2012