This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207864 #19 Mar 04 2019 23:08:13 %S A207864 1,4,34,500,10900,322768,12297768,580849872,33093252880,2227152575552, %T A207864 174131286983712,15604440074084672,1584856558077903168, %U A207864 180712593036822482176,22946861101272125055616,3222156375409363475703040 %N A207864 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors). %C A207864 From _Gus Wiseman_, Mar 01 2019: (Start) %C A207864 Also the number of stable partitions of the n-ladder graph. A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The n-ladder has 2n vertices and looks like: %C A207864 o-o-o- -o %C A207864 | | | ... | %C A207864 o-o-o- -o %C A207864 (End) %H A207864 R. H. Hardin, <a href="/A207864/b207864.txt">Table of n, a(n) for n = 1..61</a> %F A207864 It appears that the sequence terms are given by the Dobinski-type formula a(n+1) = (1/e) * Sum_{k>=0} (1+k+k^2)^n/k!. - _Peter Bala_, Mar 12 2012 %F A207864 Apply x^n -> B(n) to the polynomial chi(n) = x (x - 1) (x^2 - 3 x + 3)^(n - 1), where B = A000110. - _Gus Wiseman_, Mar 01 2019 %e A207864 Some solutions for n=5: %e A207864 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 %e A207864 1 0 1 0 1 2 1 2 1 0 1 0 1 2 1 0 1 0 1 0 %e A207864 0 1 0 1 0 1 0 1 2 1 0 1 0 1 0 2 2 1 0 1 %e A207864 1 2 1 0 1 0 1 3 3 0 2 0 3 2 2 1 1 0 1 2 %e A207864 0 1 0 1 2 1 2 4 1 2 0 1 0 1 0 2 0 1 2 0 %t A207864 Table[Expand[x*(x-1)*(x^2-3*x+3)^(n-1)]/.x^k_.->BellB[k],{n,20}] (* _Gus Wiseman_, Mar 01 2019 *) %Y A207864 Column 2 of A207868. %Y A207864 Cf. A000110, A000569, A109808, A229048, A240936, A321750, A321979, A321980, A321982, A322064. %K A207864 nonn %O A207864 1,2 %A A207864 _R. H. Hardin_, Feb 21 2012