This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207868 #12 Feb 16 2025 08:33:16 %S A207868 1,1,1,2,4,2,5,34,34,5,15,500,2052,500,15,52,10900,278982,278982, %T A207868 10900,52,203,322768,68162042,455546040,68162042,322768,203,877, %U A207868 12297768,26419793726,1625686993918,1625686993918,26419793726,12297768,877 %N A207868 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors). %C A207868 Table starts %C A207868 ...1.........1..............2.................5.................15 %C A207868 ...1.........4.............34...............500..............10900 %C A207868 ...2........34...........2052............278982...........68162042 %C A207868 ...5.......500.........278982.........455546040......1625686993918 %C A207868 ..15.....10900.......68162042.....1625686993918.103204230192540988 %C A207868 ..52....322768....26419793726.10764437129618296 %C A207868 .203..12297768.15002771641712 %C A207868 .877.580849872 %H A207868 Andrew Howroyd, <a href="/A207868/b207868.txt">Table of n, a(n) for n = 1..231</a> (terms 1..49 from R. H. Hardin) %H A207868 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>. %H A207868 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexColoring.html">Vertex Coloring</a>. %H A207868 Wikipedia, <a href="https://en.wikipedia.org/wiki/Graph_coloring">Graph Coloring</a>. %e A207868 Some solutions for n=5 k=3 %e A207868 ..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0 %e A207868 ..1..0..1....1..0..3....1..0..1....1..0..1....1..2..0....1..0..1....1..0..1 %e A207868 ..0..1..0....0..1..0....0..1..0....2..1..0....0..1..2....0..2..3....0..1..2 %e A207868 ..1..0..1....1..0..1....1..0..1....0..2..3....1..0..1....1..0..1....1..0..1 %e A207868 ..0..1..0....0..1..0....2..1..0....1..3..0....2..1..0....0..1..0....0..1..0 %Y A207868 Columns 1..5 are A000110(n-1), A207864, A207865, A207866, A207867. %Y A207868 Main diagonal is A207863. %Y A207868 Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings). %Y A207868 Cf. A207981, A208001 (knight), A208021 (king), A208054, A208096, A208301. %K A207868 nonn,tabl %O A207868 1,4 %A A207868 _R. H. Hardin_, Feb 21 2012