This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207869 #16 Jun 26 2025 07:32:17 %S A207869 1,-1,1,2,-1,0,-2,1,2,0,2,3,-1,0,-2,0,1,-2,-1,-3,1,2,0,2,3,0,1,-1,2,3, %T A207869 1,3,4,-1,0,-2,0,1,-2,-1,-3,0,1,-1,1,2,-2,-1,-3,-1,0,-3,-2,-4,1,2,0,2, %U A207869 3,0,1,-1,2,3,1,3,4,0,1,-1,1,2,-1,0,-2,2,3,1,3,4,1,2,0 %N A207869 a(n) = Z(n,-1), where Z(n,x) is the n-th Zeckendorf polynomial. %C A207869 The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813. %e A207869 The first ten Zeckendorf polynomials are 1, x, x^2, x^2 + 1, x^3, x^3 + 1, x + x^3, x^4, 1 + x^4, x + x^4; their values at x=-1 are 1, -1, 1, 2, -1, 0, -2, 1, 2, 0, indicating initial terms for A207869 and A207870. %t A207869 fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], %t A207869 t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], %t A207869 AppendTo[fr, 1]; t = t - Fibonacci[k], %t A207869 AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], %t A207869 {n, 1, 500}]; %t A207869 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207869 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207869 Table[p[n, x], {n, 1, 40}] %t A207869 Table[p[n, x] /. x -> 1, {n, 1, 120}] (* A007895 *) %t A207869 Table[p[n, x] /. x -> 2, {n, 1, 120}] (* A003714 *) %t A207869 Table[p[n, x] /. x -> 3, {n, 1, 120}] (* A060140 *) %t A207869 t1 = Table[p[n, x] /. x -> -1, %t A207869 {n, 1, 420}] (* A207869 *) %t A207869 Flatten[Position[t1, 0]] (* A207870 *) %t A207869 t2 = Table[p[n, x] /. x -> I, {n, 1, 420}]; %t A207869 Flatten[Position[t2, 0]] (* A207871 *) %t A207869 Denominator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207872 *) %t A207869 Numerator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207873 *) %Y A207869 Cf. A207813, A207870. %K A207869 sign %O A207869 1,4 %A A207869 _Clark Kimberling_, Feb 21 2012